visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-14 16:00 
일시 Jun. 14 (Tue) 4PM 
장소 Seminar Room (#2502, 2nd fl.) 
연사 Young-Sik Ra, Université Pierre et Marie Curie 

Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction

 

Jun. 14 (Tue) 4PM, Seminar Room (#2502, 2nd fl.)
Young-Sik Ra, Université Pierre et Marie Curie

 

Over the last decades, application of photonic technologies to quantum information science has been very successful, which establishes light as a promising quantum system to carry and process quantum information. Quantum information is encoded on the quantum states of light such as single photons and squeezed lights; the encoded information can be controlled with high precision, maintained with low decoherence, transmitted at the fastest speed, and decoded by efficient detectors. Conventional ways for generating the quantum states of lights are, however, unsuited for constructing a large-scale quantum system due to the highly increasing resource overheads. In this seminar, I will present development of a photonic quantum network – a correlated large-scale quantum system – based on multimode squeezed vacuums and single-photon subtraction. We employ the intrinsic multimode structure of an ultrafast frequency comb to construct the quantum network, and implement a mode-selective single-photon subtractor based on frequency up-converted single-photon detection. I will further discuss our recent progress on experimental implementation of the photonic quantum network.

 

Contact: Yoonsoo Kim (T.2599)

번호 날짜 장소 제목
471 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
470 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
469 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
468 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
467 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
466 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
465 2016-04-28 15:00  #2501(E6-2. 2nd fl.)  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
464 2016-05-11 16:00  E6-2. #1323(1st fl.)  The quest for novel high-temperature superconductors---Prospects and progress in iridates
463 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
462 2016-05-13 16:00  E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
461 2016-05-16 16:00  #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
460 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
459 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
458 2016-05-19 16:00  #1323(E6-2, 1st fl.)  Nonlinear/quantum optical effect in silicon nano-photonics
457 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
456 2016-05-31 16:00  #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
455 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
454 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
453 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
» 2016-06-14 16:00  Seminar Room (#2502, 2nd fl.)  Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction