visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-24 16:00 
일시 May 24 (Tue) 4 PM 
장소 E6-2. #1323(1st fl.) 
연사 Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University 

Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density

 

May 24 (Tue) 4 PM, E6-2. #1323(1st fl.)
Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University

 

We present the electronic and magnetic properties of two dimensional (2D) MPX3 (M= transition metal, and X = S, Se, Te) transition metal thiophosphates. The MPX3 are layered van der Waals materials and exhibit novel magnetic order as a single layer. Our calculations of the magnetic ground states in MPX3 single layer compounds predict semiconducting phases with variable band gap sizes down to metallic phases depending on their magnetic orders. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, whereas diverse ground-state phases, e.g., ferromagnetic, antiferromagnetic, and nonmagnetic phases can be expected for different compounds which are accompanied by variations in the lattice constants, and non-negligible distortions in crystal symmetries. In addition, the antiferromagnetic semiconductors of MPX3 single layer show the transition to the ferromagnetic halfmetals with both electron and hole doping, which can be controlled by applying an external gate voltage in the MPX3 field effect transistors (FET). We find that the itinerant d electrons in transition metals induce the ferromagnetic to antiferromagnetic transition accompanied by the metal to semiconductor transition. The sensitive interdependence between the magnetic, structural, and electronic properties suggest important potential of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

 

Contact: Sungjae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
287 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
286 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
285 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
284 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
283 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
282 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
281 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
280 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
279 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
278 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
277 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
276 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
275 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
274 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
273 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
272 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
271 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
270 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
269 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
268 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities