visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-01-11 11:00 
일시  
장소 E6-2 #1323 
연사 Sangjun Kang 
물리학과 양용수 교수님 연구실에서 한국과학기술연구원(KIST) 강상준 박사님을 초청하여,
로렌츠-주사투과전자현미경을 이용한 유연한 강자성체의 자기-탄성 결합에 대한 직접 관측에 대한 세미나를 아래와 같이 개최하고자 합니다.
구성원 여러분들의 많은 관심과 참여 부탁 드립니다.
 
* Title: Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM

* Speaker: Sangjun Kang (KIST)   강상준 박사

* Date: 11am, 11th January 2023 (Wednesday)

* Place: E6-2 1323 (no zoom broadcasting)

Abstract:
Soft ferromagnetic materials, e.g. silicon ferrites and Fe-based amorphous alloys, play a major role in the conversion of energy owing to their high energy efficiency and power density [1]. Their magnetic structure consists of domains, where the magnetic dipoles are aligned to minimize the magnetostatic energy. The resulting magnetic structure is highly sensitive to local variation in the atomic spacing, i.e., atomic strain, of the materials due to magnetoelastic coupling through magnetocrystalline anisotropy (K_c) and stress anisotropy (K_σ) [2]. The anisotropy contributions raise coercivity (H_c) by restricting domain wall motions. In particular, for Fe-based amorphous alloys, which originally possess an isotropic atomic structure and extremely low H_c, the magnetic properties are extremely sensitive and usually deteriorated to the imposed stress [3]. This can be critical for their application in magnetoelectric machines, e.g. induction motors, which can be mechanically stressed during usage. To understand fundamental magnetism, e.g. magnetoelastic coupling, as a basis to design new materials, correlative measurements of the magnetic and atomic structure of soft ferromagnetic materials are desired.
We have developed Lorentz 4-dimensional scanning transmission electron microscopy (Ltz-4D-STEM) for correlative mapping of the magnetic structure, strain fields, and relative packing density and applied this approach to deformed Fe-based metallic glasses as illustrated in Figure 1. Our approach considers the momentum transfer of the electron beam due to the local magnetic field, the elliptic distortion of the amorphous diffraction ring under strain, and the area encompassed by the ring to quantify the relative atomic density and reveal their spatial-correlative variance [4]. This enables a direct pixel-level correlation of the magnetic and atomic structure and thus experimentally maps the magnetoelastic energy of soft ferromagnets. This method opens a new door to studying magnetic materials.
 

[1] Li et al., Progress in Materials Science 103, 235-318 (2019)

[2] Silveyra et al., Science 362, 418 (2018)

[3] Shen et al., Nat. Commun. 9, (4414), 2018

[4] Kang et al, Nat. Commun, Under review. Currently available at Nature portfolio https://doi.org/10.21203/rs.3.rs-1545335/v1 (2022)

Attached: C.V

 

번호 날짜 장소 제목
462 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
461 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
460 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
459 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
458 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
457 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
456 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
455 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
454 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
453 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
452 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
451 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
450 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
449 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
448 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
447 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
446 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
445 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
444 2019-12-13 13:30  #1323, E6-2  Biophysics Mini-symposium at KAIST file
443 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file