visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-25 14:00 
일시 May. 25th (Wed), 14:00 
장소 E6 Room(#2501) 
연사 Dr. Duk-Hyun Choe(Samsung Advanced Institute of Technology) 

Physics Seminar

 

 

 

Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia

 

Duk-Hyun Choe

Samsung Advanced Institute of Technology

May. 25th (Wed), 14:00, E6 Room(#2501)

 

Over the past decade there has been a resurgence of interest in ferroelectric (FE) devices in the semiconductor device community. This interest was sparked by the discovery of ferroelectricity in a simple binary oxide, hafnia. Unlike conventional FE perovskite, FE hafnia exhibits ultra-scalable ferroelectricity compatible with Si electronics, providing an unprecedented opportunity for the use of FEs in advanced memory and logic devices. Many proof-of-concept devices based on FE hafnia are indeed showing some promise. However, their practical engineering is still largely relying on trial-and-error process that lacks a clear theoretical guidance, and it remains challenging to rationally design the FE devices for targeted applications. Thus, the community is now calling for more fundamental investigations on the physics of ferroelectricity in hafnia.

In this presentation, we briefly review the status of the field and provide our new understanding on FE switching and surface stability of hafnia. We will first introduce an ultralow FE switching mechanism that can enable rapid growth of the FE domains in hafnia [1]. We also establish a new class of topological domain walls in HfO2, which can help understand complex domain structures often present in FE hafnia samples. Next, we present our systematic study of surface-functionalized FE hafnia [2]. We show that their remnant polarization (Pr) and coercive field (Ec) can strongly depend on the surface treatments, providing a possible explanation for the enhancement of Pr in ultrathin hafnia with preferred orientation [3,4]. We believe our study represents an important step towards bridging the gap between practical engineering and the first-principles simulations in the field of FE hafnia.

 

[1] D.-H. Choe et al., Mater. Today 50, 8 (2021).

[2] D.-H. Choe et al., IEDM (2021).

[3] S. S. Cheema et. al., Nature 580, 478 (2020)

[4] H. Lee, D.-H. Choe, S. Jo 36499 (2021).13,  ACS Appl. Mater. Interfaces et. al.,

 

Contact: Prof. Chan-Ho Yang (chyang@kaist.ac.kr) ,

Departmentof Physics / Center for Lattice Defectronics

 

Department of Physics, KAIST

번호 날짜 장소 제목
387 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
386 2019-07-16 16:00  Rm. 1323 (E6-2)  2019 Physics Distinguished Lecture file
385 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
384 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
383 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
382 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
381 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
380 2021-02-02 14:30  Zoom  Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
379 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
378 2018-06-22 10:00  E6-6, Lecture Room 119 (1F)  Success in Research Career file
377 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
376 2020-12-02 10:00  Zoom  Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
375 2020-11-17 12:00  Online(Zoom)  Quantum- & Nano-Photonics" 세미나 시리즈 file
374 2023-05-15 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Role of dark Higgs boson in DM physics and cosmology file
373 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
372 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
371 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
370 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
369 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
368 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file