visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-14 16:00 
일시 4pm, 14th April 
장소 E6 1323 
연사 신승우 (KAIST 물리학과) 
Title: Holographic tomography of dielectric tensors at optical frequency
 
Speaker: 신승우 (KAIST 물리학과)
 
Date: 4pm, 14th April
 
Place: E6 1323 (Available seats can be limited because of the COVID situation.)
 
Abstract
Ranging from material science to soft matter physics, liquid-crystal displays, and tissue biology, three-dimensional (3D) optically anisotropic structures have been investigated for versatile purposes in various research areas. However, conventional methods indirectly access information of 3D anisotropic structure, due to the lack of direct imaging modality for 3D anisotropy.
 
Optical diffraction tomography (ODT) techniques have been successfully demonstrated in reconstructing 3D refractive index (RI) distribution for various research areas. However, applications of the techniques have been restricted to optically isotropic objects, due to the scalar wave assumption in the ODT principles. This assumption severely limits broader applications of the ODT techniques to optically anisotropic objects, particularly for liquid crystalline materials and filament structures in biological cells.
 
Here, we present dielectric tensor tomography as a label-free modality for reconstructing 3D dielectric tensors of anisotropic structures. Dielectric tensor, a physical descriptor for vectorial light-matter interaction, serves intrinsic information of optical anisotropy including principal refractive indices and optic axes. By measuring diffracted electric fields and inversely solving a vectorial wave equation, the present method offers 3D distributions of dielectric tensors, principal RIs, and optic axes of anisotropic structures. The feasibility of the present method is validated by numerical simulations and experimental results. We demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast 3D nonequilibrium dynamics.
번호 날짜 장소 제목
544 2018-09-07 15:00  학술문화관 (E9), 2층 양승택 오디토리움  Recent developments in density functional theory: From new functionals to the nature of the chemical bond file
543 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
542 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
541 2021-11-02 16:00  자연과학동(E6-2) #1323  Metrology of Band Topology via Resonant Inelastic X-ray Scattering file
540 2017-12-13 13:30  자연과학동 대형강의실 (1501호)  KAIST-KIAS Joint Workshop in Theoretical Sciences 개최 file
539 2021-05-27 16:00  온라인  찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
538 2018-08-01 11:00  양분순 빌딩 (E16-1) 207호  Future of AI: Is the brain a computer? file
537 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
536 2020-09-14 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond (Third Forum) file
535 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
534 2020-09-22 09:30  Zoom webinar  Physics and applications of soliton microcombs(Quantum- & Nano-Photonics) file
533 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
532 2021-06-08 10:00  Zoom webinar  Photonic crystal devices for sensing file
531 2021-04-19 19:00  Zoom webinar  Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
530 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
529 2020-09-28 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond(Fourth Forum) file
528 2021-12-03 16:00  Zoom webinar  Nonequilibrium Heat Transport in Elemental Metals Probed by an Ultrathin Magnetic Thermometer file
527 2021-05-17 17:00  Zoom webinar  Spin current generation and detection in uniaxial antiferromagnets file
526 2021-12-03 14:30  Zoom webinar  Topological Spin Textures: Skyrmions and Beyond file
525 2021-04-09 10:00  Zoom webinar  Integrated Lithium Niobate Photonics file