visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-25 15:00 
일시 Jan. 25th (Tue), 15:00 
장소 E6 #1501/online 
연사 Junhyun Lee (Rutgers, the State University of New Jersey) 

 

Physics Seminar

 

 

 

 

Emulating twisted double bilayer graphene with a multiorbital optical lattice

 

 

Junhyun Lee

Department of Physics and Astronomy,

Rutgers, the State University of New Jersey

 

Jan. 25th (Tue), 15:00, E6 #1501/online

https://us02web.zoom.us/j/84917344494?pwd=ZlBaNWNhVlYwYUY5RnRoQ2Q2MWp0dz09

회의 ID:  849 1734 4494

암호: 890800

 

We theoretically explores how to emulate twisted double bilayer graphene with ultracold atoms in multiorbital optical lattices. In particular, the quadratic band touching of Bernal stacked bilayer graphene is emulated using a square optical lattice with px, py, and dx2y2 orbitals on each site, while the effects of a twist are captured through the application of an incommensurate potential. The quadratic band touching is stable until the system undergoes an Anderson like delocalization transition in momentum space, which occurs concomitantly with a strongly renormalized single particle spectrum inducing flat bands, which is a generalization of the magic-angle condition realized in Dirac semimetals. The band structure is described perturbatively in the quasiperiodic potential strength, which captures miniband formation and the existence of magic-angles that qualitatively agrees with the exact numerical results in the appropriate regime. We identify several magic-angle conditions that can either have part or all of the quadratic band touching point become flat. In each case, these are accompanied by a diverging density of states and the delocalization of plane wave eigenstates. It is discussed how these transitions and phases can be observed in ultracold atom experiments.

 

Contact: Eunjung Jo, (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

 

번호 날짜 장소 제목
362 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
361 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
360 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
359 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
358 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
357 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
356 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
355 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
354 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
353 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
352 2015-10-23 10:30  E6, #1501  How to write a good scientific paper[Open lecture series]
351 2024-03-28 11:00  E6, #2501  Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
350 2016-03-07 16:00  E6, 1501  Physics Colloquium : 2016 Spring file
349 2015-09-07 16:00  E6, 1501  Physics Colloquium : 2015 Fall file
348 2015-03-09 16:00  E6, 1501  Physics Colloquium : 2015 Spring file
347 2015-09-15 16:00  E6, 1501  Physics Colloquium : 2014 Fall file
346 2014-03-10 16:00  E6, 1501  Physics Colloquium : 2014 Spring file
345 2013-09-09 16:00  E6, 1501  Physics Colloquium : 2013 Fall
344 2013-03-11 16:00  E6, 1501  Physics Colloquium : 2013 Spring
343 2012-04-02 16:00  E6, 1501  A new route to ferroelectricity in magnetic spinels: a case of Co2MnO4