visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-12 11:00 
일시 Jan 12th (Wed), 11:00 AM 
장소 Zoom and E6 #1323 
연사 Joonseok Hur (MIT) 

 

Title: Spectroscopic study of trapped ions towards probing dark matter and new physics

 

Speaker: Joonseok Hur (MIT)

 

January 12th (Wednesday), 11:00, E6 #1323 &

Zoom link: https://kaist.zoom.us/j/86232436126

 

 

Historically, precise atomic spectroscopy has led to new physics in many instances. Precision low-energy experiments may thus supplement high-energy and astrophysical approaches. It has been proposed to measure the isotope shifts (ISs) in ions to probe new physics using King plots [1], a two-dimensional graph that maps the measured ISs [2]. The Standard Model (SM) predicts in the leading order that the points in King plots should lie on a straight line. Departure from such linearity is unambiguously observed in our recent experiments with narrow optical transitions in trapped ions [3]. However, the contribution of higher-order corrections to the non-linearity within the SM complicates the test. The sources of the observed violation should be examined carefully to decouple the SM corrections arising from nuclear physics from possible new-physics contributions.

Here I will present our latest experimental and theoretical efforts to observe the non-linearity, identify its physical origin, and obtain the bound on dark boson-mediated interaction as a particular type of new physics that is of increasing interest. Future works will be discussed subsequently.

 

[1] J. C. Berengut et al., Physical Review Letters 120, 091801 (2018); V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Physical Review A 97, 032510 (2018); C. Delaunay et al., Physical Review D 96, 093001 (2017).

[2] W. H. King, Isotope Shifts in Atomic Spectra (Plenum Press, New York, 1984).

[3] I. Counts*, J. Hur* et al., Physical Review Letters 125, 123002 (2020) for the early stage of the work.

 

 

 

Contact: Myeongsoo Kang (mskang@kaist.ac.kr)

번호 날짜 장소 제목
공지 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations
228 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
227 2022-06-03 11:00  E6-2 #1323  (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
226 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
225 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
224 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
223 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
222 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
221 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
220 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
219 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
218 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
217 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
216 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
215 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
214 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
213 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
212 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
211 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
210 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
209 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime