visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2021-06-11 14:30 
일시 Jun. 11 (Fri.), 02:30 PM 
장소 Online seminar 
연사 Dr. Jin Woong Cha(KRISS) 

 

SRC Seminar

 

 

Engineering sound waves and vibrations in multi-mode nanomechanical systems

 

Dr. Jin Woong Cha

Quantum Technology Institute, KRISS

 

Jun. 11 (Fri.), 02:30 PM

Online seminar

https://kaist.zoom.us/j/89283252628
회의 ID: 892 8325 2628

암호: 916514

 

 

 

 

Abstract:

Nanoscale mechanical systems provide versatile physical interfaces with their ability to interact with various physical states, for example, electromagnetic fields (e.g., microwaves and optical light) and quantum states (e.g., spins and electrons). Therefore, engineering nanoscale sound waves and vibrations in nanomechanical systems is essential for a wide range of applications in sensing and information processing both in the classical and quantum regimes. My talk will focus on two different nanomechanical platforms I have recently worked on. In the first part of my talk, I will discuss a unique nanomechanical platform called nanomechanical lattices which enable electrically tunable phonon propagation dynamics [1] and topologically protected phonon transport [2] at MHz frequencies. This platform consists of arrays of mechanically coupled, free-standing silicon-nitride nanomechanical membranes that support propagating flexural elastic waves. For the second part of my talk, I will describe our recent studies on the cavity electromechanics in a superconducting nanoelectromechanical resonator implementing superconducting niobium [3]. This system demonstrates various optomechanical phenomena arising from the interaction of nanomechanical motions and microwave fields (e.g., phonon cooling and amplification, optomechanically induced reflection) and can be used in various applications such as quantum transducers. I will then conclude my talk by briefly describing our ongoing work at KRISS.

 

Reference:

[1] J. Cha, et al. Nature Nanotechnology 13, 1016-1020 (2018)

[2] J. Cha, et al. Nature 564, 229-233 (2018)

[3] J. Cha, et al. Nano Letters 21, 1800-1806 (2021)

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
527 2017-07-10 16:00  Jul. 10th (Mon), 4pm  “Intertwined Orders in a Heavy-fermion metal” file
526 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
525 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
524 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
523 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
522 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
521 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
520 2023-04-04 16:00  Room 2501, KAIST Natural Sciences Lecture Hall(E6)  Chiral Magnetism: A Geometric Perspective
519 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
518 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
517 2009-02-23 16:00  E6, 1501  Physics Colloquium : 2009 Spring file
516 2009-09-07 16:00  E6, 1501  Physics Colloquium : 2009 Fall file
515 2009-10-21 16:00  E6, 1501  Interdimensional Universality of Dynamic Interfaces
514 2010-02-08 16:00  E6, 1501  Physics Ciolloquium : 2010 Spring file
513 2010-02-14 16:00  E6, 1501  Physics Colloquium - 2011 Spring file
512 2010-09-06 16:00  E6, 1501  Physics Colloquium : 2010 Fall file
511 2011-05-16 16:00  E6, 1501  Photonics with surface plasmon polaritons
510 2011-09-03 16:00  E6, 1501  Physics Colloquium : 2011 Fall file
509 2012-02-13 16:00  E6, 1501  Physics Colloquium : 2012 Spring
508 2012-04-02 16:00  E6, 1501  A new route to ferroelectricity in magnetic spinels: a case of Co2MnO4