visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
일시 June 14 (THU), 10:00 AM 
장소 E6-2, 2nd fl. #2502 
연사 Prof. Kenji Toyoda 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 장소 제목
527 2017-07-10 16:00  Jul. 10th (Mon), 4pm  “Intertwined Orders in a Heavy-fermion metal” file
526 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
525 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
524 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
523 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
522 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
521 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
520 2023-04-04 16:00  Room 2501, KAIST Natural Sciences Lecture Hall(E6)  Chiral Magnetism: A Geometric Perspective
519 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
518 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
517 2009-02-23 16:00  E6, 1501  Physics Colloquium : 2009 Spring file
516 2009-09-07 16:00  E6, 1501  Physics Colloquium : 2009 Fall file
515 2009-10-21 16:00  E6, 1501  Interdimensional Universality of Dynamic Interfaces
514 2010-02-08 16:00  E6, 1501  Physics Ciolloquium : 2010 Spring file
513 2010-02-14 16:00  E6, 1501  Physics Colloquium - 2011 Spring file
512 2010-09-06 16:00  E6, 1501  Physics Colloquium : 2010 Fall file
511 2011-05-16 16:00  E6, 1501  Photonics with surface plasmon polaritons
510 2011-09-03 16:00  E6, 1501  Physics Colloquium : 2011 Fall file
509 2012-02-13 16:00  E6, 1501  Physics Colloquium : 2012 Spring
508 2012-04-02 16:00  E6, 1501  A new route to ferroelectricity in magnetic spinels: a case of Co2MnO4