visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
544 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
543 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
542 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
541 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
540 2017-11-03 16:00  #1323 (1st fl., E6-2.)  Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions file
539 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
538 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
537 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
536 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
535 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
534 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
533 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
532 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
531 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
530 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
529 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
528 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
527 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
526 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
525 2017-11-28 16:00  #1323 (E6-2. 1st fl.)  Physics after the lab and the desk: Your work in PRL file