visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

KAIST Physics Distinguished Lecture

2015.07.14 10:44

admin 조회 수:2510

날짜 2015-07-16 16:00 
일시 2015/07/16-07/17 
장소 E6-2, 1501 
연사 Sang-Wook Cheong (Rutgers Univ.) 

[Lecture1] Multiferroic vortices: why & how do they form?

 

2015/7/16 (THU) 4PM, Lecture Hall, College of Natural Sciences (1501, E6-2) /자연과학대학 공동강의실

Sang-Wook Cheong

Director, Rutgers Center for Emergent Materials, Rutgers University

 

 

Hexagonal REMnO3 (RE= rare earths) with RE=Ho-Lu, Y, and Sc, is an improper ferroelectric where the size mismatch between RE and Mn induces a trimerization-type structural phase transition, and this structural transition leads to three structural domains, each of which can support two directions of ferroelectric polarization. Six different types of domains in h-REMnO3 meet in cloverleaf arrangements that cycle through all possible configurations, Occurring in pairs, the cloverleafs can be viewed as vortices and antivortices, in which the cycle of domain configurations is reversed. Vortices and antivortices are topological defects: even in a strong electric field they won’t annihilate. These ferroelectric vortices/antivortices are found to be associated with intriguing collective magnetism at domain walls, reflecting the multiferroic nature of vortices.

 

The formation of these multiferroic vortices turns out to be analogous to the formation of cosmic strings right after big bag and also the unbinding of vortex loops in superfluid transition. We will discuss the exact nature of this proliferation process of multiferroic vortices.

 

 

[Lecture2] Hybrid Improper Ferroelectrics: Z4xZ2 domains with Z3 vortices

 

2015/7/17 (FRI) 11AM, Lecture Hall, College of Natural Sciences (1501, E6-2) / 자연과학대학 공동강의실

Sang-Wook Cheong

Director, Rutgers Center for Emergent Materials, Rutgers University

 

 

Utilizing trilinear coupling of two types of octahedron rotations, hybrid improper ferroelectricity has been theoretically predicted in double layered compounds such as (Ca,Sr,Ba)3(Mn,Ti,Sn,Zr,Ge)2O7. On the other hand, there exists little theoretical prediction on practical properties of the potentially-ferroelectric compounds such as ferroelectric transition temperature, switchability of polarization, and chemical phase stability. We have attempted to fabricate single crystals of some of these compounds, and examined the physical properties of the crystals with the aim of discovering new bulk ferroelectrics with switchable polarization at room temperature. We will discuss the results of our comprehensive experimental investigation.

Ordering of charge/spin/orbital degrees of freedom in complex materials accompanies domains and domain walls associated with the directional variants (Zm) and also antiphases (Zn). In hybrid improper ferroelectric (Ca,Sr,Ba)3(Mn,Ti,Sn,Zr,Ge)2O7, four directional variants with different polarization directions can exist, and each polarization domain has two degenerate antiphases. It turns out that the hybrid improper ferroelectrics tend to exhibit a Z4xZ2 domain structure with Z3 vortices. This can be compared with the Z2xZ3 domain structure with Z6 vortices in hexagonal REMnO3.

 

 

Host: Department of Physics, KAIST
Contact: Prof. Chan-Ho Yang (Ext.2513)

번호 날짜 장소 제목
544 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
543 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
542 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
541 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
540 2017-11-03 16:00  #1323 (1st fl., E6-2.)  Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions file
539 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
538 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
537 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
536 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
535 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
534 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
533 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
532 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
531 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
530 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
529 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
528 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
527 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
526 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
525 2017-11-28 16:00  #1323 (E6-2. 1st fl.)  Physics after the lab and the desk: Your work in PRL file