visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
일시 2015/07/16, 4PM 
장소 E6-2, 1318 
연사 Dr. Kyunghan Hong(MIT) 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 장소 제목
529 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
528 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
527 2024-01-26 15:00  E6-2 #1323  In-situ 4D-STEM studies on surface reconstruction and polarization switching of perovskite oxides
526 2020-09-24 09:00  Zoom Video  (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
525 2021-01-28 18:00  Online Seminar  Quantum metamaterials: concept, theory, prototypes and possible applications file
524 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
523 2015-12-09 11:00  E4(KI Building), Connect room (2nd fl.)  Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
522 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
521 2020-09-28 17:30  Zoom webinar  KAIST Global Forum for Spin and Beyond(Fourth Forum) file
520 2024-03-28 11:00  E6, #2501  Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
519 2023-01-12 16:00  E6-2 #1323  Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
518 2021-04-19 19:00  Zoom webinar  Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
517 2017-12-14 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  Exploring the Universe via GWs in the era of multi-messenger astronomy
516 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
515 2023-10-04 16:00  E6-2, #2502  [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
514 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
513 2016-04-06 15:30  E6-2, RM #1323  Superconducting Quantum Interference Devices for Precision Detection
512 2016-04-05 16:00  E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
511 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
510 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters