visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2020-09-24 09:00 
일시 Sep. 24(Thu), 09:00~, Sep. 24(Thu), 16:00 ~ 
장소 Zoom Video 
연사 Akash V. Dixit (University of Chicago), Dr. Boris Ivanov (Novosibirsk State Technical University) 

Speaker: Akash V. Dixit (University of Chicago)

 

Date: September 24, 2020 (Thursday)

 

Time: 9:00 AM

 

Venue: Zoom Video Conference System (Please click the link below)

 

https://kaist.zoom.us/j/6108068959?pwd=TXV2OGlWdVRtcGhmNXVTRWlla2pHQT09


Meeting ID: 610 806 8959
 

Passcode: 131015

 

Topic: Searching for Dark Matter with a Superconducting Qubit

Abstract:

The gravitational evidence for the existence of dark matter is extensive 1 , yet thus far, dark matter has evaded direct detection in terrestrial experiments. Detection mechanisms for low mass dark matter candidates such as the axion 2–5 or hidden photon 6,7 leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon 8,7. Current dark matter searches operating at microwave frequencies, use a resonant cavity to coherently accumulate the field sourced by the dark matter and use a quantum limited linear amplifier to read out the cavity signal 9–12. Here, we report the development of a novel microwave photon counting technique and use it to set a new exclusion limit on hidden photon dark matter. We constrain the kinetic mixing angle to  ≤ 1.82 × 10−15 in a narrow band around 6.011 GHz (24.86 µeV) with an integration time of 8.33 s. We operate a superconducting qubit to make repeated quantum non-demolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with performance limited by the residual population of the system. The techniques presented here will dramatically improve the sensitivity of future dark matter searches in the range of 3-30 GHz and are generally applicable to measurements that require high sensitivity to inherently low signal photon rates.

 
 

Seminar Invitation (September 24, 2020), 4 PM

 
Speaker: Dr. Boris Ivanov (Novosibirsk State Technical University)


Date: September 24, 2020 (Thursday)

Time: 4:00 PM

Venue: Webinar Video Conference System (Please click the link below)

https://webinar.kafe.or.kr

Seminar Name: Cryogenic Microwave Circuit Development at the NSTU

Password: None

 

Topic: Cryogenic Microwave Circuit Development at the NSTU

Abstract:

During the seminar I am going to show the last scientific results of 4 research performed in the Laboratory of Quantum and Cryogenic Electronics. I will concentrate the major part of the talk around cryogenic amplifiers design, development and characterization. Thus, the cryogenic low noise amplifier with the noise temperature of 6 K and gain value of more than 30 dB is shown for the frequency range from 6 to 12 GHz. Based on such microwave amplifiers the superconducting X-mon qubit structures were measured. The experiments with qubits were performed at continues microwave field and with short microwave pulses. The qubit energy spectrums were obtained and based on the AC-Stark experiment the low average photon number close to single photon mode in qubit-resonator structure was obtained. From the other side for the bolometer circuits readout and Josephson junctions measurements the low frequency cryogenic amplifiers were designed and characterized. The minimum voltage noise density corresponds to 150 pV/root(Hz) with the gain value of more than 60 dB for the presented amplifiers.

번호 날짜 장소 제목
247 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
246 2023-07-10 16:00  E6, #1323  Electronic structures of magnetic and non-magnetic ordering in d- and f-electrons systems
245 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
244 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
243 2022-07-14 15:00  E6 #1501 & Zoom  Pure two-dimensional quantum electron liquid and its phase transition
242 2022-07-14 14:15  E6 #1501 & Zoom  Hund and electronic correlations in ruthenium-based systems
241 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation
240 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
239 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
238 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
237 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
236 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
235 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
234 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
233 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
232 2021-01-28 18:00  Online Seminar  Quantum metamaterials: concept, theory, prototypes and possible applications file
231 2021-01-28 15:00  Zoom  Topological Transport of Deconfined Hedgehogs in Magnets file
230 2024-01-16 14:00  E6-2, #1323  Dimer Physics and Superconductivity in La3Ni2O7
229 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
228 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file