visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-16 16:00 
일시 Jun. 16 (Thu) 4PM 
장소 #1323(E6-2, 1st fl.) 
연사 Hyochul Kim, Samsung Advanced Institute of Technology 

“Quantum information processing using quantum dots and photonic crystal cavities”

 

Jun. 16 (Thu) 4PM, #1323(E6-2, 1st fl.)
Hyochul Kim, Samsung Advanced Institute of Technology

 

The ability to interface light with solid-state quantum bits (qubits) is essential for future development of scalable and compact quantum information systems that operate on ultra-fast timescales. Photons act as ideal carriers of quantum information and can serve as an efficient quantum link between matter qubits. Quantum dots (QDs) provide a promising implementation of a matter qubit, which can store quantum information in both excitonic states and highly stable spin states, providing an atom-like system in a semiconductor platform. By coupling these QDs to optical nano-cavities it becomes possible to achieve the strong coupling regime where a QD can modify the cavity spectral response, providing an efficient light-matter interface.
In this talk, I will explain that the qubit state of a photon can be controlled by a single solid-state qubit composed of a QD strongly coupled to a photonic crystal cavity.  The QD acts as a coherently controllable qubit system that conditionally flips the polarization of a photon reflected from the cavity on picosecond timescales, which implements a controlled NOT logic gate between the QD and the incident photon. Furthermore, the spin of a single electron or hole trapped in a charged QD can be used as a solid-state qubit with long coherence time. I will discuss our recent experimental realization of a quantum phase switch using a solid-state spin confined in a QD strongly coupled to a photonic crystal cavity, where the switch applies a spin-dependent phase shift on a photon.


Contact: Yoonsoo Kim (T.2599)

번호 날짜 장소 제목
426 2021-05-27 16:00  온라인  찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
425 2021-07-29 14:00  Online seminar  Gravitationally Induced Dark Sector and Inflationary Dynamics file
424 2019-08-19 10:00  Rm. 1322, E6-2  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
423 2016-04-01 14:30  E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
422 2016-04-01 16:15  E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
421 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
420 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
419 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
418 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
417 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
416 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
415 2023-04-14 12:00  E6-2 #1323  (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
414 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
413 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
412 2021-04-19 19:00  Zoom webinar  Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
411 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
410 2021-04-02 14:30  Online(Zoom)  Quantum computing and entanglement generation using trapped ions and photons
409 2021-04-02 16:00  Online(Zoom)  Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy
408 2023-04-27 16:00  E6-2 #1323  (광학분야 세미나)On-chip spectrometers based on CMOS image sensors
407 2017-04-27 16:00  Seminar Room(#1323, E6-2)  반도체 양자점을 이용한 단광자 광원