“Hybrid quantum systems with mechanical oscillators”
2016.10.14 17:34
장소 | E6-2. 1st fl. #1323 |
---|---|
일시 | Oct. 18 (Tue.), 3PM |
연사 | Dr. JunHo Suh, Korea Research Institute of Standards and Science |
“Hybrid quantum systems with mechanical oscillators”
Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323
Abstract:
Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator. Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.
[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).
Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
60 | Oct. 07 (Fri), 1:30 PM | E6-2. #1323(1st fl.) | Dr. Suk Bum Chung, IBS-CCES , Seoul National University | “Symmetry and topology in transition metal dichalcogenide?” |
59 | Oct. 07 (Fri), 4:00 PM | E6-2. #1323(1st fl.) | Dr. Choong Hyun Kim,IBS-CCES, Seoul National University | “Tilt engineering of 4d and 5d transition metal oxides?” |
58 | Oct. 10(Tue) 4PM | E6-2 #1323 | 김성웅 교수 (성균관대학교 에너지과학과) | Discovery of New 2D Materials with Diverse Physical Properties |
57 | Oct. 12 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Daniel Kyungdeock Park |
Quantum Advantage in Learning Parity with Noise
![]() |
56 | Oct. 12 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. HyungWoo Lee |
Direct observation of a two-dimensional hole gas at oxide interfaces
![]() |
55 | Oct. 15, 4pm | (https://kaist.zoom.us/j/93997220310) | 정현석 교수님 (SNU) | Towards resource-efficient and fault-tolerant quantum computation with nonclassical light |
54 | Oct. 16 (Fri.), 02:30 PM | https://kaist.zoom.us/j/89198078609 | Dr. Chulki Kim |
Nanoscale magnetic resonance detection towards nano MRI
![]() |
53 | Oct. 16 (Fri.), 04:00 PM | https://kaist.zoom.us/j/89198078609 | Dr. Daesu Lee |
Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern
![]() |
52 | Oct. 17th (Mon) 11:00 AM | #1323,(E6-2, 1st fl.) | Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam | IMS and examples of the studies on optoelectronic materials |
51 | Oct. 18 (Tue.), 1:30 PM | 1st fl. #1323(E6-2) | Dr. Chan-Ho Yang, Department of Physics, KAIST | "Visualization of oxygen vacancy in motion and the interplay with electronic conduction" |
» | Oct. 18 (Tue.), 3PM | E6-2. 1st fl. #1323 | Dr. JunHo Suh, Korea Research Institute of Standards and Science | “Hybrid quantum systems with mechanical oscillators” |
49 | Oct. 25 (Fri), 15:00 ~ | #1323, E6-2 | Daesu Lee,Junwoo Son,MyungJoon Han ,Siheon Ryee,Eun-Gook Moon |
Physics Seminar
![]() |
48 | Oct. 27th(Thu) 4PM | #1323(E6-2) | Dr. 이 강 희, KAIST, Mechnical Engineering | Terahertz Metal Optics |
47 | October 11 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Joung-Real Ahn |
Dirac electrons in a graphene quasicrystal
![]() |
46 | October 15 (Mon.), 16:00 PM | #1323, E6-2 | Dr. Yongjoo Baek |
Universal properties of macroscopic current-carrying systems
![]() |
45 | October 15 (Tue.), 16:00 PM | #1323, E6-2 | Prof. Pilkyung Moon |
Moiré superlattices and graphene quasicrystal
![]() |
44 | October 15, 2020 (Thursday | CAPP Seminar Room #C303, Creation Hall (3F), KAIST Munji Campus | Prof. Gil-Ho Lee (POSTECH) |
Graphene-based Josephson junction microwave bolometer
![]() |
43 | October 15, 5:00pm | https://bit.ly/3ndIiJn | Dr. Samuli Autti |
Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe
![]() |
42 | October 16 (Tue.), 10:00 AM | #1323, E6-2 | Dr. Won-Ki Cho |
Capturing protein cluster dynamics and gene expression output in live cells
![]() |
41 | October 16 (Wed), 4:00pm | #1323 (E6-2, 1st fl.) | Dr. Jaewon Song |
Emergent black holes and monopoles from quantum fields
![]() |