visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-09-26 11:00 
일시 Sep. 26 (Tue.), 11AM 
장소 #1323 (E6-2. 1st fl.) 
연사 Dr. Yukiaki Ishida / ISSP, University of Tokyo 

Time-resolved ARPES study of Dirac and topological materials

 Dr. Yukiaki Ishida / ISSP, University of Tokyo

 Sep. 26 (Tue.), 11AM

#1323 (E6-2. 1st fl.)

 

 

Time- and angle-resolved photoemission spectroscopy (TARPES) has become a powerful tool to investigate the non-equilibrated states and dynamics of matter from an electronic structural point of view. Being a surface sensitive method, TARPES has also opened pathways to explore the ultrafast phenomena occurring on the edge of matter. We present investigations done on Dirac and topological materials by using a TARPES apparatus that achieves the energy resolution of 10.5 meV and high stability [1].

       1. Classification of the topological phase of matter:

In 2008, it was demonstrated that there are two classes in non-magnetic insulators. A topological twist can be defined for the bulk band structure, and those that have the twist belong to the topologically-nontrivial class. The effect of the twist appears on the edge: On surface of topological insulators (TIs), novel Dirac-type dispersion is formed. Thus, the classification can be done by investigating whether the surface Dirac dispersion exists or not. 

2. Functioning surface of topological insulators by light:

We discovered that surface photo-voltage (SPV) can emerge on TIs when the bulk is sufficiently insulating [5]. That is, TIs now meet the well-known opto-electronic function of semiconductors. We discuss that the SPV effect can be utilized to generate spin-polarized current on TI surface, and present the ongoing research towards this end. 

3. Ultrafast dynamics of Dirac electrons:

Massless Dirac fermions have the ability to absorb light of whatever color. Thus, Dirac fermions are prospective in opto-electronics. In fact, ultrashort pulses of any color can be created by using TIs and graphitic materials. Broad-band lasing may also be realized if a population inversion can be formed across the Dirac point. Firm understanding of the Dirac electron dynamics thus becomes of paramount importance. We show that an inverted population is realized in the surface Dirac band of a TI Sb2Te3 [6]. Dynamics being either within or beyond a simple two-temperature model scheme is observed in layered Dirac semimetals such as graphite and SrMnBi2 [7].

[1] Y. Ishida et al., Rev. Sci. Instrum. 85, 123904 (2014); Y. Ishida et al., Sci. Rep. 6, 18747 (2016). 

[3] P. Zhang et al., Phys. Rev. Lett. 118, 046802 (2017). 

[3] S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014). 

[4] I. Belopolski et al., Nature Commun. 7, 13643 (2016). 

[5] Y. Ishida et al., Sci. Rep. 5, 8160 (2015); M. Neupane et al., Phys. Rev. Lett. 115, 116801 (2015).

[6] S. Zhu et al., Sci. Rep. 5, 13213 (2015). 

[7] Y. Ishida et al., Sci. Rep. 1, 64 (2011); Y. Ishida et al., Phys. Rev. B 93, 100302(R) (2016). 

 

번호 날짜 장소 제목
169 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
168 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
167 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
166 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
165 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
164 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
163 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
162 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
161 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
160 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
159 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
158 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
157 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
156 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
155 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
154 2023-06-22 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] The muon g-2 puzzle file
153 2015-10-15 10:00  E6-2, 5th fl. #5318  Development of Large-Bore, High Field Magnets at the NHMFL
152 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
151 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
150 2015-07-16 16:00  E6-2, 1318  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics