visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-13 14:30 
일시 May. 13 (Fri.), 02:30 PM 
장소 Zoom webinar 
연사 Dr. Kun-Rok Jeon(Department of Physics, Chung-Ang University) 

SRC Seminar

 

 

Topological Superconducting Spintronics Towards Zero-Power Computing Technologies

 

Dr. Kun-Rok Jeon

Department of Physics, Chung-Ang University

 

May. 13 (Fri.), 02:30 PM

https://kaist.zoom.us/j/88323922428
회의 ID: 883 2392 2428

암호: 839974

Abstract:

Semiconductor (SC) spintronics [1-4] aims to integrate memory and logic functions into a single device. Ferromagnetic tunnel contacts have emerged as a robust and technically viable method to inject spin current into a SC up to room temperature, and to detect it [3-7]. Intriguingly, it has been established that the spin current in ferromagnetic tunnel contacts can be created by thermal means (driven by a heat flow), namely Seebeck spin tunneling [8]. So far, the creation of thermal spin current relies on the spin-dependent energy dispersion of electronic states around the Fermi energy (EF), which determines thermoelectric properties. In the first part of my talk, I will describe a conceptually new approach to tailor the thermal spin current in ferromagnetic tunnel contacts to SCs exploiting spin-dependent thermoelectric properties away from EF through the application of a bias voltage across the tunnel contact [9,10].

Combining superconductivity with spintronics brings in a variety of notable phenomena which do not exist in the normal state, for instance quantum coherence, superconducting exchange coupling and spin-polarized triplet supercurrents [11,12]. This nascent field of superconducting spintronics promises to realize zero-energy-dissipation spin transfer and magnetization switching. Recent equilibrium (zero-bias) studies of the Josephson effect in S/FM/S (FM: ferromagnet; S: Superconductor) junctions and the critical temperature Tc modulation in FM/S/FM and S/FM/FM' superconducting spin valves have demonstrated that engineered magnetically-inhomogeneous S/FM interfaces can generate long-range triplet pairing states which explicitly carry spin [11,12]. However, direct measurement of triplet spin transport through a singlet S has not so far been achieved. In the second part, I will describe an essentially different approach, namely, a time-dependent ferromagnetic magnetization [ferromagnetic resonance (FMR)] can drive spin-polarized transport in a singlet S via spin-triplet states induced by spin-orbit coupling [13,14].

If time permits, I will briefly outline outstanding technical issues for the realization of energy-efficient (or even dissipation-less) spintronic technologies and present my research direction of how to address these issues via topology physics [15,16].

Reference: [1] Rev. Mod. Phys. 80, 1517 (2008), [2] Rev. Mod. Phys. 76, 323 (2004), [3] Nat. Mater. 11, 400 (2012), [4] Semicond. Sci. Technol. 27, 083001 (2012), [5] Nature 462, 491 (2009), [6] Appl. Phys. Express 4, 023003 (2011), [7] Phys. Rev. Appl. 2, 034005 (2014), [8] Nature 475, 82 (2011), [9] Nat. Mater. 13, 360 (2014), [10] Phys. Rev. B 91, 155305 (2015), [11] Nat. Phys. 11, 307 (2015), [12] Rep. Prog. Phys. 78, 104501 (2015), [13] Nat. Mater. 17, 499 (2018), [14] Phys. Rev. X 10, 031020 (2020), [15] Nat. Mater. 20, 1358 (2021), [16] Under review in Nat. Nanotech. (2022).

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
167 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
166 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
165 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
164 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
163 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
162 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
161 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
160 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
159 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
158 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
157 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
156 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
155 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
154 2023-06-22 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] The muon g-2 puzzle file
153 2015-10-15 10:00  E6-2, 5th fl. #5318  Development of Large-Bore, High Field Magnets at the NHMFL
152 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
151 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
150 2015-07-16 16:00  E6-2, 1318  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics
149 2023-04-27 11:00  E6-2 #1322  Inverse Shapiro steps and coherent quantum phase slip in superconducting nanowires
148 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect