visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-22 16:00 
일시 June 22 (Fri.), 04:00 PM 
장소 #1323, E6-2 
연사 Dr. Daniel Sando 

Physics Seminar

 

 

Tuning functional properties of BiFeO3films using strain and growth chemistry

 

Dr. Daniel Sando

Univ. of New South Wales, Sydney

 

June 22 (Fri.), 04:00 PM

#1323, E6-2

 

Abstract:

Multiferroics – materials with coexisting ferroic orders such as ferroelectricity and (anti)-ferromagnetism – are presently under intense study by virtue of their promise in next-generation data storage devices. Bismuth ferrite (BiFeO3– BFO) is one of the very few that orders above room temperature. In the bulk, BFO is rhombohedral (R), and in thin films [1] its properties are sensitive to strain [2,3]. The discovery of the epitaxially-stabilized “super tetragonal phase” of BFO (T-BFO) [4] incited a flurry of research activity focused on understanding the phase transition and its possible functionalities [5]. T-BFO is also multiferroic, with large ferroelectric polarization and antiferromagnetic order [4], and the strain relaxation-induced T/R phase mixtures and their exceptional piezoelectric responses [6] continue to intrigue and motivate researchers. A particularly important characteristic of this phase mixture is the interconversion between the R,T phases with an applied electric field [6]. Since the oxygen configuration of the R and T polymorphs is different [5], the electronic, magnetic, and optical properties can thus be dynamically modulated. An additional rather crucial (and thus far underexplored) aspect of mixed R/T BFO is the role of chemistryin the formation of the metastable T-phase. Since T-BFO is typically fabricated by pulsed laser deposition, growth parameters can be used as a strong handle to tailor film properties and functionalities.

Here I will describe our work on understanding the influence of strain and growth conditions on the optical, magnetic, and ferroelectric properties of BFO films. I will also show that by precisely controlling fabrication conditions, the formation of the mixed R/T phases in BFO films can be completely suppressed for thicknesses above 70 nm. Such an intriguing result is useful for applications where thicker pure T-BFO films are needed, such as for measuring the expected giant polarization, or for precisely controlling the proportions of the various phases. Finally, through analysis of a large set of epitaxial films, it will be shown that the optical band gap of BFO is rather insensitive to a host of growth and processing parameters [7]. Combined with the numerous other functionalities of this material, one can envisage multifunctional devices, for example, that harvest mechanical and solar energy, or to enhance magnetoelectric coupling at these multiferroic phase boundaries.

References

[1] Sando et al., J. Phys: Condens. Matt. 26, 473201 (2014). 

[2] Infante et al., PRL 105, 057601 (2010). 

[3] Sando et al., Nat. Mater. 12, 641 (2013). 

[4] Bea et al., PRL 102, 217603 (2009). 

[5] Sando et al., Appl. Phys. Rev. 3, 011106 (2016). 

[6] Zeches et al., Science 326, 977 (2009). 

[7] Sando et al., Adv. Opt Mater. 6, 1700836 (2018).

 

 

 Department of Physics, KAIST

번호 날짜 장소 제목
189 2023-09-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Axion Magnetic Resonance file
188 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
187 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
186 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
185 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
184 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
183 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
182 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
181 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
180 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
179 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
178 2023-05-03 16:00  E6-2, #2502  Probing microscopic origins of axions by the chiral magnetic effect
177 2020-10-15 17:00  https://bit.ly/3ndIiJn  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
176 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
175 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
174 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
173 2015-10-16 15:00  E6-2, 5th fl. #5318  High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble
172 2018-07-02 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
171 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
170 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file