visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2020-11-20 16:00 
일시 Nov. 20 (Fri.), 04:00 PM 
장소 Online 
연사 Dr. Dohun Kim 

 

SRC Seminar

 

 

 

 

 

Coherent control of field gradient induced quantum dot spin qubits

 

 

 

Dr. Dohun Kim

 

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University

 

 

 

Nov. 20 (Fri.), 04:00 PM

 

Online seminar

 

https://kaist.zoom.us/j/82243139535
회의 ID: 822 4313 9535
암호: 151742

 

 

 

 

 

 

 

Abstract:

 

The electron spin degree of freedom in solids form natural basis for constructing quantum two level systems, or qubits. The electron spin qubit offers a route for fast manipulation of spins using magnetic resonance or field gradient induced electric control, but generally suffers from dephasing due to strong coupling to the environment, especially nuclear spin bath, where decoherence dynamics is often non-Markovian and quasi-static. This talk will review experimental progress of fast GaAs based spin qubits and efforts to mitigate or even control the environment nuclear spin bath using hyperfine interaction. Starting from discussing general introduction to quantum transport measurements in quantum dots, circuit design, and need for high-throughput measurement methods for developing highly coherent and scalable qubit platform, I will focus on implementations of advanced quantum measurement and control protocols of singlet-triplet qubits including high fidelity singlet-shot measurements, Bayesian estimation-based adoptive control, and sequential Monte-Carlo method. In particular, we show that clever quantum control using FPGA-based hardware programming enables real time Hamiltonian parameter estimation actively suppressing quasi-static noise.

 

 

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
187 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
186 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
185 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
184 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
183 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
182 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
181 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
180 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
179 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
178 2023-05-03 16:00  E6-2, #2502  Probing microscopic origins of axions by the chiral magnetic effect
177 2020-10-15 17:00  https://bit.ly/3ndIiJn  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
176 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
175 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
174 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
173 2015-10-16 15:00  E6-2, 5th fl. #5318  High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble
172 2018-07-02 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
171 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
170 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
169 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
168 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file