Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
2017.04.26 13:51
장소 | E6-2. 1st fl. #1323 |
---|---|
일시 | Apr. 28 (Fri.), 02:30 PM |
연사 | Dr. JeongYoung Park Graduate School of EEWS, KAIST |
“Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion”
Dr. JeongYoung Park
Graduate School of EEWS, KAIST
Apr. 28 (Fri.), 02:30 PM
E6-2. 1st fl. #1323
Abstract:
A pulse of high kinetic energy electrons (1–3 eV) in metals can be generated after surface exposure to external energy, such as the absorption of light or exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms and are called ‘‘hot electrons’’. The detection of hot electrons and understanding the correlation between hot electron generation and surface phenomena are challenging questions in the surface science and catalysis community. Hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) appears to be correlated with localized surface plasmon resonance.
In this talk, I will show strategy to quantify the non-adiabatic energy transfer and detect hot electron flux during the elementary steps of the energy conversion process and catalytic reaction processes occurring at both of solid-gas and solid-liquid interfaces. To detect and utilize the hot electron flows, the nanodiodes consisting of metal catalyst film, semiconductor layers, and Ohmic contact pads were constructed It was shown that the chemicurrent or hot electron flows were well correlated with the turnover rate of CO oxidation or hydrogen oxidation separately measured by gas chromatography, suggesting the intrinsic relation between catalytic reaction and hot electron generation. We show a novel scheme of graphene catalytic nanodiode composed of a Pt NPs array on graphene/TiO2 Schottky nanodiode, which allows detection of hot electron flows induced by hydrogen oxidation on Pt NPs. By analyzing the correlation between the turnover rate (catalytic activity) and hot electron current (chemicurrent) measured on the graphene catalytic nanodiodes, we demonstrate that the catalytic nanodiodes utilizing a single graphene layer for electrical connection of Pt NPs are beneficial for the detection of hot electrons due to not only atomically thin nature of graphene but also reducing the height of the potential barrier existing at the Pt NPs/graphene interface. I will show that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. Finally, The effect of surface plasmons on the catalytic and photocatalytic activity on metal–oxide hybrid nanocatalysts is also highlighted. These phenomena imply the efficient energy conversion from the photon energy to the chemical energy, with the potential application of hot electron-based photocatalytic devices.
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
96 | May. 11 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Kun Woo Kim |
Disordered Floquet topological insulators
![]() |
95 | May 31 (Tue.) 4 PM | #1323(E6-2, 1st fl.) | Dr. Kimin Kim, KAIST | Understanding 3D tokamak physics towards advanced control of toroidal plasma |
94 | Apr. 01 (Fri.) 2:30 PM | E6-2. 1st fl. #1501 | Dr. KICHEON KANG, Chonnam National University | Interference of single charged particles without a loop and dynamic nonlocality |
93 | Nov. 11th(Fri), 1:30 p.m. | #1323(E6-2. 1st fl.) | Dr. Keun Su Kim, POSTECH | Bandgap Engineering of Black Phosphorus |
92 | November 29 (Thu.), 16:00 PM | #1323, E6-2 | Dr. Kee suk Hong |
양자 칸델라 실현을 위한 단일 광자 발생장치 개발
![]() |
91 | 2015/11/24, 4PM | E6-2, #1323 | Dr. Kab-Jin Kim (Institute for Chemical Research, Kyoto University, Japan) | Topology-based understanding of spin dynamics in inhomogeneously magnetized systems |
90 | Jul. 08 (Fri.) 2PM | #1323(E6-2. 1st fl.) | Dr. Junhyun Lee, Harvard University | Electronic quasiparticles in the quantum dimer model |
89 | Oct. 18 (Tue.), 3PM | E6-2. 1st fl. #1323 | Dr. JunHo Suh, Korea Research Institute of Standards and Science | “Hybrid quantum systems with mechanical oscillators” |
88 | 2015/12/17, 11:00AM | E4(KI Building), Matrix Hall (2nd fl.) | Dr. Jung-Hoon Park (Purdue University) | Wavefront engineering for in-vivo Deep brain imaging |
87 | June 27 (Wed.), 13:30 PM | #1323, E6-2 | Dr. Jung Sik Park |
Magnetic reversal of artificial spin ice
![]() |
86 | July. 14 (Fri.), 3:00 PM | #1323 (E6-2. 1st fl.) | Dr. Jun Hyun Lee / University of Maryland |
Chiral anomaly in disordered Weyl semimetals
![]() |
85 | Nov. 1 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Ju-Jin Kim |
Electron transport through weak-bonded contact metal with low dimensional nano-material
![]() |
84 | Sep. 27 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Joon Sue Lee |
Spin-charge conversion in topological insulators for spintronic applications
![]() |
83 | Dec. 7 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Joon Ho Jang |
Novel probes of interacting electrons in 2D systems
![]() |
82 | October 19 (Fri.), 10:00 AM | #1323, E6-2 | Dr. Jongsoo Yoo |
Energy conversion processes during magnetic reconnection in a laboratory plasma
![]() |
81 | Nov. 04 (Fri), 1:30 PM | E6-2. #1323(1st fl.) | Dr. Jonghyun Song, Department of Physics, Chungnam National University | Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications |
80 | 2015/08/03,10:30AM | E6-2, #1323 (Seminar Room) | Dr. Jonghee Yoo (Fermi National Accelerator Laboratory, USA ) | Axion Search |
79 | Apr. 01 (Fri.) 4:15 PM | E6-2. 1st fl. #1501 | Dr. JONG SOO LIM, KIAS | Cotunneling drag effect in Coulomb-coupled quantum dots |
78 | December 3 (Tue.), 4:00 PM | #1323, E6-2 | Dr. Jong Mok Ok |
Toward Quantum Materials with Correlated Oxides
![]() |
77 | Mar. 2nd (Thu), 4:00 p.m | #1323(E6-2. 1st fl.) | Dr. Jonathan Denlinger, Lawrence Berkeley National Lab | “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems” |