visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-11 13:30 
일시 April 11 (Wed), 1:30pm 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Yongsoo Yang 

Physics Seminar

 

Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level

 

Dr. Yongsoo Yang

Dept. of Physics and Astronomy, UCLA

 

April 11 (Wed), 1:30pm

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Modern science and technology rely on functional materials, and the physical properties of these materials often strongly depend on defects, local disorder, nanoscale heterogeneities, and grain structures at the atomic scale. Traditional crystallography, which is reliant on periodicity, has been the main method for determining crystal structures, but cannot determine defects or other non-crystalline features. My work goes beyond crystallography. Without any prior assumption of underlying structure, atomic electron tomography (AET) is now able to locate the 3D coordinates of individual atoms with picometer precision and with elemental specificity [1-3]. I will show a variety of complex atomic structures with 3D atomic-level details; including grain boundaries, chemical order/disorder, phase boundaries, and anti-site point defects. I will further demonstrate that these experimentally determined atomic structures can be combined with quantum mechanical calculations to provide an atomic-level understanding of physical properties such as 3D strain tensors, magnetic moments and local magnetocrystalline anisotropy. Understanding the relationship between atomic structure and physical properties will open up new avenues in condensed matter physics and allow the rational design of novel materials at the atomic scale [1-2].

[1] Yang et al., Nature 542, 75-79 (2017).

[2] Xu et al., Nature Mater. 14, 1099-1103 (2015).

[3] Pryor*, Yang* et al., Sci. Rep. 7:10409 (2017).

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
282 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
281 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy
280 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
279 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
278 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
277 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
276 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
275 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
274 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
273 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
272 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
271 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
270 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
269 2023-03-16 16:00  E6-2 #1323  (광학분야 세미나) Investigation of 3D cell mechanics using refractive-index tomography
268 2023-01-09 16:00  E6-2 #1323  Non-Hermitian Hopf-bundle Matter. Moon Jip Park (IBS-PCS)
267 2023-01-10 16:00  E6-2 #1323  Terahertz Spectroscopy of Quantum Materials, Jae Hoon Kim (Yonsei University)
266 2023-03-24 11:00  E6-2 #1323  (응집물리 세미나)Floquet simulators of topological surface states in isolation
265 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
264 2023-04-06 16:00  E6-2 #1323  (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics
263 2023-03-30 16:00  E6-2 #1323  (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer