visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1533

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
184 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
183 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
182 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
181 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
180 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
179 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
178 2015-09-07 15:00  E6-2. 1st fl. #1318  Advanced Optical Materials and Devices at NRL
177 2016-04-05 16:00  E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
176 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
175 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
174 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
173 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
172 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
171 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
170 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
169 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
168 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
167 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
166 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
165 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file