visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1527

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
224 2023-03-22 16:00  E6-2, #2502  (High Energy Theory Seminar) Boltzmann or Bogoliubov? A Case of Gravitational Particle Production
223 2023-11-22 16:00  E6-2, #2502  [High Energy Theory Seminar] Renormalization and the Hierarchy Problem
222 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
221 2023-05-03 16:00  E6-2, #2502  Probing microscopic origins of axions by the chiral magnetic effect
220 2023-10-04 16:00  E6-2, #2502  [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
219 2023-09-26 16:00  E6-2, #2502  [High Energy Theory Seminar]A new step in interacting dark sector cosmologies
218 2023-06-14 16:00  E6-2, #2502  [High-Energy Theory Seminar]Vertex algebras and extended operators in 4d N=2 SCFTs
217 2023-06-16 13:00  E6-2, #2502  Quantum critical states under extreme conditions
216 2023-11-01 16:00  E6-2, #2502  [High Energy Theory Seminar] Modular functions and 3D N=4 rank-zero superconformal field theories
215 2023-08-29 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards string loop corrections in Calabi-Yau orientifold compactifications.
214 2023-06-01 16:00  E6-2, #5301  Hall viscosity and topological phenomena
213 2023-11-22 10:00  E6-2, #5301 & zoom  [High Energy Theory Seminar] Exact Quantum Algorithms to Recognize Quantum Phases of Matter
212 2020-02-12 13:00  E6-2, #5318  From inflation to new weak-scale file
211 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals
210 2015-10-23 15:00  E6-2, #5318  Development of a Rogowski Coil as a new beam position monitor
209 2015-07-16 16:00  E6-2, 1318  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics
208 2015-07-16 16:00  E6-2, 1501  KAIST Physics Distinguished Lecture
207 2016-03-11 13:30  E6-2, 1501 외  Physics Seminar Serises : 2016 Spring file
206 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
205 2018-06-14 10:00  E6-2, 2nd fl. #2502  Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation file