visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-01 16:00 
일시 Apr. 1(Fri.), 04:00 PM 
장소 Zoom webinar 
연사 Dr. Kayoung Lee (KAIST) 

 

SRC Seminar

 

 

High-field Electron Transport and Interaction Induced Phenomena in 2D Materials

 

Dr. Kayoung Lee

Electrical Engineering, KAIST

 

Apr. 1 (Fri.), 04:00 PM

https://kaist.zoom.us/j/89879980781
회의 ID: 898 7998 0781

암호: 808795

 

 

 

Abstract:

In this talk, I will present our research that spans from fundamental electron transport mechanisms to interaction induced phenomena in low-dimensional electron systems, each of which is in dire need of

innovation to incubate new material-based devices with high performance. Using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric, we studied interactions

between the two bilayers, where the interlayer spacing is smaller than the intra-layer particle spacing. I will present frictional drag probed on the double bilayer systems, a phenomenon in which charge current

flowing in one (drive) layer induces a voltage drop in the opposite (drag) layer. At temperatures (T) lower than 10 K, we observe a large anomalous negative drag near the drag layer charge neutrality, which increases dramatically with reducing T, strikingly becoming comparable to the layer resistivity at the lowest T = 1.5 K. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of the drag. The talk will then move on to our recent investigation into electron transport and drift velocity saturation at high electric field in emerging 2D InSe semiconductor with a mobility >2700 cm2/Vs at room temperature. I will report the first measured saturation velocity of 2D InSe exceeding 2 x 107 cm/s. Employing our modified optical phonon emission model to explain the drift velocity saturation at high electric field, we estimate the energy of InSe optical phonons.

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
282 2022-06-03 11:00  E6-2 #1323  (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
281 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
280 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
279 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
278 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
277 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
276 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
275 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
274 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
273 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
272 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
271 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
270 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
269 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
268 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
267 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
266 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
265 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
264 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
263 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction