visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-09-02 14:30 
연사  
장소 E6-2(1st fl.), #1323 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
131 2017-06-02 16:00    Maxwell's demon in quantum wonderland file
130 2017-06-02 14:30    Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
129 2017-05-12 13:30    Topological Dirac insulator
128 2017-04-28 16:00    Carbon nanotubes coupled to superconducting impedance matching circuits
127 2017-04-28 14:30    Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
126 2017-04-27 16:00    반도체 양자점을 이용한 단광자 광원
125 2017-04-06 16:00    For whom the Belle tolls
124 2017-04-05 12:00    2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
123 2017-03-24 16:00    Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
122 2017-03-24 14:30    Topological Dynamics
121 2017-03-21 16:00    Spring 2017: Physics Seminar Serises file
120 2017-03-06 16:00    Spring 2017: Physics Colloquium file
119 2017-03-02 16:00    “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 2017-02-01 14:00    Quantum electron optics using flying electrons
117 2017-01-09 16:00    Topological Defects and Phase Transitions" file
116 2016-12-8 16:00    Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
115 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
114 2016-12-09 16:00    Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
113 2016-12-09 13:30    Entanglement area law in strongly-correlated systems
112 2016-11-29 16:00    Symmetry Protected Kondo Metals and Their Phase Transitions