• HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-14 16:00 
일시 4pm, 14th April 
장소 E6 1323 
연사 신승우 (KAIST 물리학과) 
Title: Holographic tomography of dielectric tensors at optical frequency
Speaker: 신승우 (KAIST 물리학과)
Date: 4pm, 14th April
Place: E6 1323 (Available seats can be limited because of the COVID situation.)
Ranging from material science to soft matter physics, liquid-crystal displays, and tissue biology, three-dimensional (3D) optically anisotropic structures have been investigated for versatile purposes in various research areas. However, conventional methods indirectly access information of 3D anisotropic structure, due to the lack of direct imaging modality for 3D anisotropy.
Optical diffraction tomography (ODT) techniques have been successfully demonstrated in reconstructing 3D refractive index (RI) distribution for various research areas. However, applications of the techniques have been restricted to optically isotropic objects, due to the scalar wave assumption in the ODT principles. This assumption severely limits broader applications of the ODT techniques to optically anisotropic objects, particularly for liquid crystalline materials and filament structures in biological cells.
Here, we present dielectric tensor tomography as a label-free modality for reconstructing 3D dielectric tensors of anisotropic structures. Dielectric tensor, a physical descriptor for vectorial light-matter interaction, serves intrinsic information of optical anisotropy including principal refractive indices and optic axes. By measuring diffracted electric fields and inversely solving a vectorial wave equation, the present method offers 3D distributions of dielectric tensors, principal RIs, and optic axes of anisotropic structures. The feasibility of the present method is validated by numerical simulations and experimental results. We demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast 3D nonequilibrium dynamics.
번호 날짜 장소 제목
174 2022-01-18 14:00  KI bldg. 5th fl. Room B501 & Zoom  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
173 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
172 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
171 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
170 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
169 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
168 2022-03-18 11:00  Online seminar  (응집물리 세미나) Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids file
167 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
166 2022-03-25 11:00  E6-1 #1323  (응집물리 세미나) Hund's metallicity in ruthenate systems file
165 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
164 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
163 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
162 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
161 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
160 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
159 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
158 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
157 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
» 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
155 2022-04-15 11:00  Online seminar  (응집물리 세미나) First-principles studies of polar oxides and their applications file