visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-25 14:00 
일시 May. 25th (Wed), 14:00 
장소 E6 Room(#2501) 
연사 Dr. Duk-Hyun Choe(Samsung Advanced Institute of Technology) 

Physics Seminar

 

 

 

Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia

 

Duk-Hyun Choe

Samsung Advanced Institute of Technology

May. 25th (Wed), 14:00, E6 Room(#2501)

 

Over the past decade there has been a resurgence of interest in ferroelectric (FE) devices in the semiconductor device community. This interest was sparked by the discovery of ferroelectricity in a simple binary oxide, hafnia. Unlike conventional FE perovskite, FE hafnia exhibits ultra-scalable ferroelectricity compatible with Si electronics, providing an unprecedented opportunity for the use of FEs in advanced memory and logic devices. Many proof-of-concept devices based on FE hafnia are indeed showing some promise. However, their practical engineering is still largely relying on trial-and-error process that lacks a clear theoretical guidance, and it remains challenging to rationally design the FE devices for targeted applications. Thus, the community is now calling for more fundamental investigations on the physics of ferroelectricity in hafnia.

In this presentation, we briefly review the status of the field and provide our new understanding on FE switching and surface stability of hafnia. We will first introduce an ultralow FE switching mechanism that can enable rapid growth of the FE domains in hafnia [1]. We also establish a new class of topological domain walls in HfO2, which can help understand complex domain structures often present in FE hafnia samples. Next, we present our systematic study of surface-functionalized FE hafnia [2]. We show that their remnant polarization (Pr) and coercive field (Ec) can strongly depend on the surface treatments, providing a possible explanation for the enhancement of Pr in ultrathin hafnia with preferred orientation [3,4]. We believe our study represents an important step towards bridging the gap between practical engineering and the first-principles simulations in the field of FE hafnia.

 

[1] D.-H. Choe et al., Mater. Today 50, 8 (2021).

[2] D.-H. Choe et al., IEDM (2021).

[3] S. S. Cheema et. al., Nature 580, 478 (2020)

[4] H. Lee, D.-H. Choe, S. Jo 36499 (2021).13,  ACS Appl. Mater. Interfaces et. al.,

 

Contact: Prof. Chan-Ho Yang (chyang@kaist.ac.kr) ,

Departmentof Physics / Center for Lattice Defectronics

 

Department of Physics, KAIST

번호 날짜 장소 제목
273 2019-09-27 14:30  E6-2. 1st fl. #1323  Spin-charge conversion in topological insulators for spintronic applications file
272 2019-09-27 16:00  E6-2. 1st fl. #1323  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
271 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
270 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
269 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
268 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
267 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
266 2019-10-29 14:30  #1323, E6-2  Quantum sensing file
265 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
264 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
263 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
262 2019-11-01 16:00  E6-2. 1st fl. #1323  Electron transport through weak-bonded contact metal with low dimensional nano-material file
261 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
260 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
259 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
258 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
257 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
256 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
255 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
254 2019-12-13 13:00  #2501, E6-2  Computational Material Designs: Current Status and Future Directions file