visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1525

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
426 2021-05-27 16:00  온라인  찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
425 2021-07-29 14:00  Online seminar  Gravitationally Induced Dark Sector and Inflationary Dynamics file
424 2019-08-19 10:00  Rm. 1322, E6-2  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
423 2016-04-01 14:30  E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
422 2016-04-01 16:15  E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
421 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
420 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
419 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
418 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
417 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
416 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
415 2023-04-14 12:00  E6-2 #1323  (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
414 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
413 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
412 2021-04-19 19:00  Zoom webinar  Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
411 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
410 2021-04-02 14:30  Online(Zoom)  Quantum computing and entanglement generation using trapped ions and photons
409 2021-04-02 16:00  Online(Zoom)  Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy
408 2023-04-27 16:00  E6-2 #1323  (광학분야 세미나)On-chip spectrometers based on CMOS image sensors
407 2017-04-27 16:00  Seminar Room(#1323, E6-2)  반도체 양자점을 이용한 단광자 광원