visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
일시 June 14 (THU), 10:00 AM 
장소 E6-2, 2nd fl. #2502 
연사 Prof. Kenji Toyoda 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 장소 제목
304 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
303 2022-01-11 15:00  E6 #1501  Ultrafast optical studies on CDW collective modes of the Weyl-CDW (TaSe4)2I file
302 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
301 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
300 2022-01-18 14:00  KI bldg. 5th fl. Room B501 & Zoom  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
299 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
298 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
297 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
296 2024-01-16 14:00  E6-2, #1323  Dimer Physics and Superconductivity in La3Ni2O7
295 2021-01-28 15:00  Zoom  Topological Transport of Deconfined Hedgehogs in Magnets file
294 2021-01-28 18:00  Online Seminar  Quantum metamaterials: concept, theory, prototypes and possible applications file
293 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
292 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
291 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
290 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
289 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
288 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
287 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
286 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
285 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation