Time-resolved ARPES study of Dirac and topological materials
2017.09.20 13:12
장소 | #1323 (E6-2. 1st fl.) |
---|---|
일시 | Sep. 26 (Tue.), 11AM |
연사 | Dr. Yukiaki Ishida / ISSP, University of Tokyo |
Time-resolved ARPES study of Dirac and topological materials
Dr. Yukiaki Ishida / ISSP, University of Tokyo
Sep. 26 (Tue.), 11AM
#1323 (E6-2. 1st fl.)
Time- and angle-resolved photoemission spectroscopy (TARPES) has become a powerful tool to investigate the non-equilibrated states and dynamics of matter from an electronic structural point of view. Being a surface sensitive method, TARPES has also opened pathways to explore the ultrafast phenomena occurring on the edge of matter. We present investigations done on Dirac and topological materials by using a TARPES apparatus that achieves the energy resolution of 10.5 meV and high stability [1].
1. Classification of the topological phase of matter:
In 2008, it was demonstrated that there are two classes in non-magnetic insulators. A topological twist can be defined for the bulk band structure, and those that have the twist belong to the topologically-nontrivial class. The effect of the twist appears on the edge: On surface of topological insulators (TIs), novel Dirac-type dispersion is formed. Thus, the classification can be done by investigating whether the surface Dirac dispersion exists or not.
2. Functioning surface of topological insulators by light:
We discovered that surface photo-voltage (SPV) can emerge on TIs when the bulk is sufficiently insulating [5]. That is, TIs now meet the well-known opto-electronic function of semiconductors. We discuss that the SPV effect can be utilized to generate spin-polarized current on TI surface, and present the ongoing research towards this end.
3. Ultrafast dynamics of Dirac electrons:
Massless Dirac fermions have the ability to absorb light of whatever color. Thus, Dirac fermions are prospective in opto-electronics. In fact, ultrashort pulses of any color can be created by using TIs and graphitic materials. Broad-band lasing may also be realized if a population inversion can be formed across the Dirac point. Firm understanding of the Dirac electron dynamics thus becomes of paramount importance. We show that an inverted population is realized in the surface Dirac band of a TI Sb2Te3 [6]. Dynamics being either within or beyond a simple two-temperature model scheme is observed in layered Dirac semimetals such as graphite and SrMnBi2 [7].
[1] Y. Ishida et al., Rev. Sci. Instrum. 85, 123904 (2014); Y. Ishida et al., Sci. Rep. 6, 18747 (2016).
[3] P. Zhang et al., Phys. Rev. Lett. 118, 046802 (2017).
[3] S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014).
[4] I. Belopolski et al., Nature Commun. 7, 13643 (2016).
[5] Y. Ishida et al., Sci. Rep. 5, 8160 (2015); M. Neupane et al., Phys. Rev. Lett. 115, 116801 (2015).
[6] S. Zhu et al., Sci. Rep. 5, 13213 (2015).
[7] Y. Ishida et al., Sci. Rep. 1, 64 (2011); Y. Ishida et al., Phys. Rev. B 93, 100302(R) (2016).
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
208 | August. 16th (Fri), 14:00 | E6 Room(#1323) | Jinxing Zhang |
Multiferroic and Magnetoelectric Effects by Tailoring Interfacial Chemistry and Physics in Correlated Oxides
![]() |
207 | May. 17(Mon) 17:00 | Zoom webinar | Jing Shi (UC Riverside, USA) |
Spin current generation and detection in uniaxial antiferromagnets
![]() |
206 | May. 8th (Wed), 16:00 | E6 Room(#1323) | Jieun Lee |
Imaging valley dependent electron transport in 2D semiconductors
![]() |
205 | May. 8th (Wed), 16:00 | E6 Room(#1323) | Jieun Lee |
Imaging valley dependent electron transport in 2D semiconductors
![]() |
204 | June 27 (Thu), 2:00 PM | #2502, E6-2 | Hyun-Yong Lee |
Gapless Kitaev Spin Liquid to Loop and String Gases
![]() |
203 | Jun. 16 (Thu) 4PM | #1323(E6-2, 1st fl.) | Hyochul Kim, Samsung Advanced Institute of Technology | Quantum information processing using quantum dots and photonic crystal cavities |
202 | Dec. 11 (Fri.), 04:00 PM | online | Hyobin Yoo(Sogang Univ.) | Atomic and electronic reconstruction at van der Waals interface in twisted 2D materials |
201 | August. 1st (Thu), 14:00 | E6 Room(#1323) | Hyeok Yoon |
Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy
![]() |
200 | August 27 (Tue.), 4:00PM | Rm. 1323, E6 | Hiroshi Eisaki |
Critical current properties of Fe-based superconductors
![]() |
199 | January 17 (Fri), 4:00 PM | #1323, E6-2 | Hiroki Ikegami |
Symmetry Breaking and Topology in Superfluid 3He
![]() |
198 | September 26 (Thu.), 16:00 PM | #1323, E6-2 | Han Seb Moon |
Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble
![]() |
197 | December 27(Fri.), 15:00 | E6-2,#5318 | Han Gyeol Suh |
The superconducting order parameter puzzle of Sr2RuO4
![]() |
196 | Dec 27 (Fri), 3:00 PM | #5318, E6-2 | Han Gyeol Suh |
The superconducting order parameter puzzle of Sr2RuO4
![]() |
195 | May. 12(Thu), 4pm | E6-2. #1323 & Zoom | Dr.Philip Chang (University of California San Diego, Department of Physics) | New frontiers of electroweak physics at the LHC |
194 | May. 19(Thu), 4pm | E6-2. #1323 & Zoom | Dr.Jay Hyun Jo (Yale University, Department of Physics) | Chasing Long Standing Neutrino Anomalies with MicroBooNE |
193 | May. 18(Wed), 4pm | E6-2. #1323 & Zoom | Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy) | Geometry, Algebra, and Quantum Field Theory |
192 | Nov. 18th (Fri) 10:30 a.m. | #5318(5th fl.) | Dr. 최 순 원, Havard University | Non-equilibrium many-body spin dynamics in diamond |
191 | Oct. 27th(Thu) 4PM | #1323(E6-2) | Dr. 이 강 희, KAIST, Mechnical Engineering | Terahertz Metal Optics |
190 | June 28 (Fri.), 13:30 PM | #1323, E6-2 | Dr. Yusuke Kozuka |
Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures
![]() |
189 | Apr. 08 (Fri.), 13:30 PM | E6-2. 1st fl. #1501 | Dr. Yunkyu Bang, Chonnam National Univ. | Theoretical Overview of Iron-based superconductors and its future |