visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-05 16:00 
일시 Apr. 5 (Tue.), 4PM 
장소 E6-2. 1st fl. #1322 
연사 Dr. Ara Go, Columbia University 

"A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space"

 

Apr. 5 (Tue.), 4PM, E6-2. 1st fl. #1322
Dr. Ara Go, Columbia University

 

The exact diagonalization (ED) has many attractive advantages as an impurity solver for the dynamical mean-field theory (DMFT). It solves the impurity Hamiltonians with any types of interaction in contrast to the quantum Monte Carlo, which suffers from the severe sign problem in low symmetry situation. However, the ED approximates the continuous bath to a finite quantum mechanical problem to reduce the system size, so that the total number of orbitals is less than 14. This is insufficient, to treat most multi-orbital systems via the DMFT. To overcome this limit, we first adapt the configuration interaction (CI) as an impurity solver. We show the computed optical conductivity through this method is in excellent agreement with the experiment at gap edge. We have further developed adaptive truncations of the Hilbert space, which can handle much larger impurity Hamiltonians without loosing the advantages of the ED. We benchmark the one-dimensional Hubbard model and show that this impurity solver can obtain sufficiently accurate Green functions of impurity Hamiltonian with 24 electronic orbitals. The solvable system size in this method is larger than twice of the ED limit, and this capability enlarges the DMFT applications to many unexplored problems. I also discuss the possible applications, focussing on the multi-orbital systems with low symmetry.

 

Contact: MyungJoon Han, Physics Dept., (mj.han@kaist.ac.kr)

번호 날짜 장소 제목
287 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
286 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
285 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
284 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
283 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
282 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
281 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
280 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
279 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
278 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
277 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
276 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
275 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
274 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
273 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
272 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
271 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
270 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
269 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
268 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities