visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1525

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
282 2022-06-03 11:00  E6-2 #1323  (응집물리 세미나) Theoretical Investigation of Exotic Quantum States in Low-dimensional Materials
281 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
280 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
279 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
278 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
277 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
276 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
275 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
274 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
273 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
272 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
271 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
270 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
269 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
268 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
267 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
266 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
265 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
264 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
263 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction