visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
259 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
258 2019-09-18 16:00  Seminar Room #1323  Fall 2019: Physics Seminar Serises file
257 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
256 2019-09-10 15:00  #2502, E6-2  (2+1) D Duality Web from 3D Euclidean Lattice file
255 2019-09-02 16:00  Seminar Room 1501  Fall 2019: Physics Colloquium file
254 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
253 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
252 2019-08-19 10:00  Rm. 1322, E6-2  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
251 2019-08-16 14:00  E6 Room(#1323)  Multiferroic and Magnetoelectric Effects by Tailoring Interfacial Chemistry and Physics in Correlated Oxides file
250 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
249 2019-08-06 16:00  E6 Room(#1323)  Visualization of in-plane piezoresponse vector fields file
248 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
247 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
246 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
245 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
244 2019-07-21 12:00  E6-2,# 5318  Challenges and Opportunities in Theoretical Particle Physics 2019 file
243 2019-07-16 16:00  Rm. 1323 (E6-2)  2019 Physics Distinguished Lecture file
242 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
241 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
240 2019-07-03 15:00  E6-2, 2501  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file