visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
일시 2015/07/16, 4PM 
장소 E6-2, 1318 
연사 Dr. Kyunghan Hong(MIT) 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 장소 제목
231 2020-10-16 14:30  https://kaist.zoom.us/j/89198078609  Nanoscale magnetic resonance detection towards nano MRI file
230 2020-10-16 16:00  https://kaist.zoom.us/j/89198078609  Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
229 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
228 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
227 2020-11-17 12:00  Online(Zoom)  Quantum- & Nano-Photonics" 세미나 시리즈 file
226 2020-11-20 14:30  Online  Lumpy Cooper pairs in an iron-based superconductor
225 2020-11-20 16:00  Online  Coherent control of field gradient induced quantum dot spin qubits
224 2020-11-26 16:00  Online(Zoom)  2020 가을학기 광학분야 특별세미나(Light Engineering Beyond the Diffraction Limit)
223 2020-12-02 10:00  Zoom  Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
222 2020-12-09 10:00  Zoom  Searching for the QCD axion with the ARIADNE experiment file
221 2020-12-10 13:55  Zoom  Consistency of Boltzmann equation and light dark matter from inflaton decay
220 2020-12-11 14:30  online  Antisymmetric interlayer exchange coupling in magnetic multilayers
219 2020-12-11 16:00  online  Atomic and electronic reconstruction at van der Waals interface in twisted 2D materials
218 2020-12-23 10:00  Online  Online workshop for Quantitative Phase Imaging file
217 2021-01-28 15:00  Zoom  Topological Transport of Deconfined Hedgehogs in Magnets file
216 2021-01-28 18:00  Online Seminar  Quantum metamaterials: concept, theory, prototypes and possible applications file
215 2021-02-02 14:30  Zoom  Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
214 2021-02-15 17:00  Zoom  Magnetic Cluster Octupole Domain evolutation in chiral antiferromagnets file
213 2021-02-17 09:00  Online  석학 대중 강연 및 강의 시리즈 file
212 2021-03-02 16:00  Online  Sensitive terahertz detection with graphene-based transistors file