visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:1195

장소 E6-2 #1323 (1st floor) 
일시 Sep. 29th(Thu), 4PM 
연사 Dr. Sangyoon Han, Department of Physics, KAIST 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 일시 장소 연사 제목
256 October 15, 5:00pm  https://bit.ly/3ndIiJn  Dr. Samuli Autti  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
255 Jun. 2 (Fri.), 4:00 PM  #1323 (E6-2. 1st fl.)  Dr. Sang Wook Kim  Maxwell's demon in quantum wonderland file
254 2015/12/03, 4PM  E6-2, #1323  Dr. Sang-Yun Lee (3rd institute of Physics, University of Stuttgart, Germany)  Hybrid solid state spin qubits in wide bandgap semiconductors
253 Jun. 10 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Sanghoon Kim(Department of Physics, University of Ulsan)  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
252 Mar. 24 (Fri.), 4:00 PM  #1323 (1st fl. E6-2)  Dr. SangWook Lee  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
» Sep. 29th(Thu), 4PM  E6-2 #1323 (1st floor)  Dr. Sangyoon Han, Department of Physics, KAIST  Large-scale Silicon Photonic MEMS Switches
250 2015/07/15, 2PM  E6-2,1323  Dr. Se Young Park(Rutgers Univ.)  Electronic and optical properties of titanate-based oxide superlattices
249 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
248 Apr. 19 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Seok Kyun Son  Graphene and hBN heterostructures file
247 2016/1/26, 2PM  E6-2, #1323  Dr. Sergei V. Kalinin (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory)  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
246 Mar. 29 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Seung Hyub Baek  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
245 Jun. 01 (Fri.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung Sae Hong  Topological phases in low-dimensional quantum materials file
244 October 29 (Tue.), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Seung-Joo Lee  Particles and Gravity via String Geometry file
243 Apr. 09 (Mon.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung-Sup B. Lee  Doublon-holon origin of the subpeaks at the Hubbard band edges file
242 October 31 (Thu.), 10:00am  #1323 (E6-2, 1st fl.)  Dr. Seung-Sup Lee  Kondo meets Hubbard: Impurity physics for correlated lattices file
241 Jun. 10 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Seunghun Lee(Department of Physics, Pukyong National University)  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
240 February 13th (Thur.), 16:30 PM  E6-6, #119  Dr. Seyoon Kim(University of Wisconsin-Madison)  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
239 November 20 (Wed.), 4:00 PM  #5302, E6-2  Dr. Shigeyuki Ishida  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
238 November 5 (Tue.), 4:00 PM  #1323, E6-2  Dr. Shik Shin  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
237 Dec. 3 (Fri.), 02:30 PM  Zoom webinar  Dr. Soong-Geun Je(Chonnam National University)  Topological Spin Textures: Skyrmions and Beyond file