visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

SWELLABLE COLLOIDAL PARTICLES ARE SWELL

2015.12.06 21:49

관리자 조회 수:1889

날짜 2015-12-09 14:00 
일시 2015/12/09, 2PM 
장소 E6-2, #1323 
연사 Arjun G. Yodh (University of Pennsylvania) 

SWELLABLE COLLOIDAL PARTICLES ARE SWELL


ABSTRACT
I will discuss soft matter experiments from my lab that explore fundamental questions about phase transition mechanisms and glasses. Briefly, soft materials deform easily when pushed, and some important examples include colloidal suspensions, emulsions, oil-water interfaces, polymer & surfactant solutions, liquid crystals, and mixtures thereof. Our recent work develops and takes advantage of a novel class of colloidal suspension composed of temperature-sensitive hydrogel particles; the temperature “knob” permits easy control of particle packing and simultaneous viewing by video microscopy [1]. These features, in turn, enable us to use colloidal crystals to answer fundamental questions about “how and where” crystal melting begins and about the mechanisms by which one crystal transforms to another during a solid-solid phase transition [2]. These features have also enabled us to critically explore open questions about disordered solids, e.g., how glasses rearrange internally when responding to mechanical stress [3]. After a broad introduction, I will describe these new experiments.
REFERENCES
[1] Yunker, P.J., Chen, K., Gratale, M.D., Lohr, M.A., Still, T., Yodh, A.G., Reports on
Progress in Physics 77, 056601 (Epub 2014).
[2] A.M. Alsayed, M.F. Islam, J. Zhang, P.J. Collings, A.G. Yodh, Science 309, 1207-1210 (2005); Y. Han, Y. Shokef, A. Alsayed, P. Yunker, T. C. Lubensky, A. G. Yodh, Nature 456,
898-903 (2008); Peng, Y., Wang, F., Wang, Z., Alsayed, A.M., Zhang, Z., Yodh, A.G., and
Han, Y., Nature Materials (Epub 2014).
[3] Chen, K., Ellenbroek, W.G., Zhang, Z.X., Chen, D.T.N., Yunker, P.J., Henkes, S., Brito, C., Dauchot, O., van Saarloos, W., Liu, A.J., and Yodh, A.G., Phys. Rev. Lett. 105, 025501 (2010); Chen, K., Manning, M.L., Yunker, P.J., Ellenbroek, W.G., Zhang, Z., Liu, A.J., and Yodh, A.G., Phys. Rev. Lett. 107, 108301 (2011); Still, T., Goodrich. C.P., Chen, K., Yunker, P.J., Schoenholz, S., Liu, A.J., and Yodh, A.G., Phys. Rev. E 89, (2014).

번호 날짜 장소 제목
402 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
401 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
400 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
399 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
398 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
397 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
396 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
395 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
394 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
393 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
392 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
391 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
390 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
389 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
388 2017-09-22 16:00  E6-2. 1st fl. #1323  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
387 2019-09-27 16:00  E6-2. 1st fl. #1323  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
386 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
385 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
384 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
383 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy