visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
일시 2015/07/16, 4PM 
장소 E6-2, 1318 
연사 Dr. Kyunghan Hong(MIT) 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 장소 제목
402 2023-07-20 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Cosmoparticle Physics of Dark Universe file
401 2022-07-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Quintessential axions file
400 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
399 2015-03-13 14:00  Connect Room, KI Bldg.  The 15th Innovative Workshop on Soft/Bio Materials file
398 2015-12-09 11:00  E4(KI Building), Connect room (2nd fl.)  Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
397 2015-12-17 11:00  E4(KI Building), Matrix Hall (2nd fl.)  Wavefront engineering for in-vivo Deep brain imaging
396 2015-07-23 13:30  E4, B401  Enhanced ZnO based UV photonics and related applications file
395 2023-05-17 14:00  E6 #1323  Optical Response in the multilayer thin films
394 2023-04-28 11:00  E6 #1323  Tkachenko wave: From the modern field theory viewpoint
393 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
392 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
391 2022-01-11 15:00  E6 #1501  Ultrafast optical studies on CDW collective modes of the Weyl-CDW (TaSe4)2I file
390 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
389 2022-07-14 14:15  E6 #1501 & Zoom  Hund and electronic correlations in ruthenium-based systems
388 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
387 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation
386 2022-07-14 15:00  E6 #1501 & Zoom  Pure two-dimensional quantum electron liquid and its phase transition
385 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
384 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
383 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file