visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-10-18 15:00 
일시 Oct. 18 (Tue.), 3PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
457 2015-03-04 12:00  1323호, E6-2  Bioimaging and Biosensing Using Near-Infrared Fluorescence file
456 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
455 2016-10-18 13:30  1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
454 2019-07-10 16:00  Academic Cltural Complex (E9) 5층 스카이라운지  Public Lectures file
453 2015-08-04 11:00  B501, Room Red, KI bldg. 5nd fl.  Propagation of ultrasound through two- and three-dimensional strongly scattering media
452 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
451 2020-10-15 16:00  CAPP Seminar Room #C303, Creation Hall (3F), KAIST Munji Campus  Graphene-based Josephson junction microwave bolometer file
450 2023-06-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] EMC at CERN file
449 2023-09-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Dark matter searches in Water Cherenkov Detectors file
448 2023-03-27 15:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  A coherent mechanical oscillator pumped by a suspended quantum dot file
447 2023-03-30 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Detecting axions with chiral magnetic effects file
446 2023-09-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Axion Magnetic Resonance file
445 2023-09-18 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Searching for axions in quantum vacuum birefringence file
444 2023-10-11 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Particle Physics with Neutrinos file
443 2023-07-20 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Cosmoparticle Physics of Dark Universe file
442 2023-07-26 10:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Am Expansive Search for Dark Matter with ADMX and DM Radio
441 2024-01-25 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminars] Detecting Gravitational Waves by Elecromagnetic Cavity
440 2023-05-15 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Role of dark Higgs boson in DM physics and cosmology file
439 2023-06-15 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Cryogenic electronics for ion traps file
438 2023-06-22 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] The muon g-2 puzzle file