visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2866

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
407 2021-11-02 16:00  자연과학동(E6-2) #1323  Metrology of Band Topology via Resonant Inelastic X-ray Scattering file
406 2023-11-01 16:00  E6-2, #2502  [High Energy Theory Seminar] Modular functions and 3D N=4 rank-zero superconformal field theories
405 2016-11-1 10:30  #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
404 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
403 2022-11-18 16:00  E6-2. 1st fl. #1323 & Zoom  Qubits, new experimental tools for physics file
402 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
401 2022-11-17 16:00  E6-2 #1323  (광학분야 세미나) Ultrastructural and Spectroscopic Studies by Super-Resolution Fluorescence Microscopy
400 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
399 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
398 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
397 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
396 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
395 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid file
394 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
393 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
392 2016-11-01 14:30  Seminar Room #1323(E6-2)  Search for dark sector particles in the B-factory experiments
391 2019-11-01 16:00  E6-2. 1st fl. #1323  Electron transport through weak-bonded contact metal with low dimensional nano-material file
390 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
389 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
388 2016-11-04 13:30  E6-2. #1323(1st fl.)  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications