visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-18 14:00 
일시 Jan. 18(Tue), 2pm-3pm 
장소 KI bldg. 5th fl. Room B501 & Zoom 
연사 YoungJu Jo (Stanford University) 

[Seminar]

18 Jan 2022, Tue, 2pm-3pm, KI bldg. 5th fl. Room B501

Zoom: https://kaist.zoom.us/j/89586032430

회의 ID: 895 860 324 30

 

Data-driven interrogation of biological dynamics:
from subcellular interactions to neuronal networks in vivo

 

 

YoungJu Jo

PhD Candidate in Applied Physics, Deisseroth Laboratory, Stanford University

 

 

Biological systems are nonlinear dynamical systems consisting of heterogeneous entities. Understanding the logic of the complex spatiotemporal dynamics in such systems, robustly implementing specific biological functions, may require new approaches beyond the traditional hypothesis-driven experimental designs. Here we present a data-driven approach, enabled by high-throughput experimental and computational technologies, across multiple scales. We first discuss a computational imaging technique for simultaneously visualizing multiple aspects of subcellular dynamics [1, 2], its potential combination with molecular optogenetics to study the cell signaling networks, and the remaining challenges in these systems. Then we turn to neuronal networks in behaving animals where high-dimensional neural population activity could be reliably measured and perturbed over extended time. Synergizing with recent technical advances, we propose and experimentally demonstrate a unified deep learning framework to identify the underlying neural dynamical systems, reverse-engineer the neural computation implemented by the dynamics, and design spatiotemporally patterned optogenetic stimulation for naturalistic manipulation of animal behavior [3]. Application of this framework to the mouse habenular circuitry reveals cell-type-specific reward history coding implemented by line attractor dynamics [4].

 

References:

1. Jo*, Park* et al. Science Advances 3(8), e1700606, 2017.

2. Jo*, Cho*, Park* et al. Nature Cell Biology 23, 1329–1337, 2021.

3. Jo et al. in preparation.

4. Sylwestrak*, Vesuna*, Jo* et al. in revision.

 

문의: 박용근 교수 (내선:2514)

 

 

번호 날짜 장소 제목
482 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
481 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
480 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
479 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
478 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
477 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
476 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
475 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
474 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
473 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
472 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
471 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
470 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
469 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
468 2018-11-08 16:00  #1323, E6-2  Conformality lost file
467 2019-10-29 14:30  #1323, E6-2  Quantum sensing file
466 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
465 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
464 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
463 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file