visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-10-28 11:00 
일시 Oct. 28 (Fri), 11:00AM 
장소 E6-2 #1323 
연사 김수란(경북대 물리교육과 교수) 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기한: 2023.10.27까지)
 
o 일시: 2022. 10. 28(금)  11:00
o 장소: E6-2 Room 1323
o Zoom Link: https://kaist.zoom.us/j/83127228653  회의 ID:  831 2722 8653
 
o 연사: 김수란 교수(경북대학교 물리교육과)
o 강연주제: Machine-Learning-Guided Prediction Models and Materials discovery for high Tc Cuprates
Abstract
Cuprates have been at the center of long debate regarding their superconducting mechanism; therefore, predicting the critical temperatures of cuprates remains elusive. We demonstrate herein, using ab initio computations, a new trend suggesting that the cuprates with stronger out-of-CuO2-plane chemical bonding between the apical anion (O, Cl) and apical cation (e.g., La, Hg, Bi, Tl) are generally correlated with higher Tc;max in experiments. Also, using machine learning, we predict the maximum superconducting transition temperature (Tc,max) of hole-doped cuprates and suggest the functional form for Tc,max with the root-mean-square-error of 3.705 K and R2 of 0.969. We have found that the Bader charge of apical oxygen, the bond strength between apical atoms, and the number of superconducting layers are essential to estimate Tc,max. Furthermore, we predict the Tc,max of hypothetical cuprates generated by replacing apical cations with other elements. Among the hypothetical structures, the cuprates with Ga show the highest predicted Tc,max values, which are 71, 117, and 131 K for one, two, and three CuO2 layers, respectively. These findings suggest that machine learning could guide the design of new high-Tc superconductors in the future.
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
번호 날짜 장소 제목
113 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
112 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
111 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
110 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
109 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
108 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
107 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
106 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
105 2016-11-1 10:30  #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
104 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
103 2016-11-04 13:30  E6-2. #1323(1st fl.)  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
102 2016-11-01 14:30  Seminar Room #1323(E6-2)  Search for dark sector particles in the B-factory experiments
101 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
100 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
99 2016-10-18 13:30  1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
98 2016-10-17 11:00  #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials
97 2016-10-07 16:00  E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
96 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
95 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
94 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches