visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-10 16:00 
일시 Nov. 10th(Thu) 4 p.m. 
장소 E6-2. #1323(1st fl.) 
연사 Prof. Min Seok Jang, Electrical Engineering, KAIST 

Low Dimensional Active Plasmonics and Electron Optics in Graphene

 

Nov. 10th(Thu) 4 p.m., E6-2. #1323(1st fl.)
Prof. Min Seok Jang, Electrical Engineering, KAIST

 

 

The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as a candidate material for future electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics, which offers a unique platform to dynamically modulate light with unprecedented spatial and temporal resolutions.

 

In this talk, I will present a few examples of these intertwined topics. First, I will introduce “rainbow trapping” structures, broadband plasmonic slow light systems composed of single or double negative materials, and clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. I will then show that electrons in graphene exhibit photon-like dynamics and how this analogy between photonics and electronics can inspire to solve an interesting problem of electron backscattering in graphene field effect transistors. Finally, I will present how the surface plasmons in graphene can be harnessed to create infrared metasurfaces that have tunable optical properties including extreme light-matter interaction and macroscopic modulation of light absorption and thermal emission.

 

Contact: Contact: Min-kyo Seo, Physics Dept. (T.2517)

 

번호 날짜 장소 제목
203 2011-09-03 16:00  E6, 1501  Physics Colloquium : 2011 Fall file
202 2011-05-16 16:00  E6, 1501  Photonics with surface plasmon polaritons
201 2010-02-14 16:00  E6, 1501  Physics Colloquium - 2011 Spring file
200 2010-09-06 16:00  E6, 1501  Physics Colloquium : 2010 Fall file
199 2010-02-08 16:00  E6, 1501  Physics Ciolloquium : 2010 Spring file
198 2009-10-21 16:00  E6, 1501  Interdimensional Universality of Dynamic Interfaces
197 2009-09-07 16:00  E6, 1501  Physics Colloquium : 2009 Fall file
196 2009-02-23 16:00  E6, 1501  Physics Colloquium : 2009 Spring file
195 2024-06-03 11:00  E6, #3441  New high Tc superconductivity and symmetric pseudogap metal in the bilayer nickelate La3Ni2O7-Part1 file
194 2024-06-05 10:00  E6, #2501  Moir\’e fractals in supermoir\’e structures
193 2024-03-28 11:00  E6, #2501  Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
192 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
191 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
190 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
189 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
188 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
187 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
186 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
185 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
184 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes