visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-12-17 11:00 
일시 2015/12/17, 11:00AM 
장소 E4(KI Building), Matrix Hall (2nd fl.) 
연사 Dr. Jung-Hoon Park (Purdue University) 

Wavefront engineering for in-vivo Deep brain imaging

 

Dec. 17(Thu) 11:00 AM, KI B/D, Matrix Hall, 2nd fl.
Dr. Jung-Hoon Park , School of Electric and Computer Sciences, Purdue University,USA

 

The brain is a unique organ which still holds many challenges that must be overcome for deeper understanding. The relation between the structure and function of the brain is still a big mystery due to the diversity in cell type and functional connections. In this respect, optical imaging holds unique advantages with its molecular specificity and high spatiotemporal resolution which allows simultaneous observation of both structure and function of the brain. However, deep brain imaging requires the light to be delivered efficiently through multiple scattering caused by the thick tissue. In this talk, I will describe our recent developments in wavefront engineering that overcome this barrier and enable high resolution large volume deep brain imaging and through-skull imaging of live mice.

Jung Hoon Park is a postdoctoral researcher in the School of Electrical and Computer Engineering at Purdue University. He received his PhD in physics from KAIST and conducted research at Janelia Research Campus prior to moving to Purdue with Dr. Meng Cui. His research interests focuses on building novel optical systems to enable high resolution deep tissue imaging, especially the brain.

 

Contact: Prof.YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr

번호 날짜 장소 제목
187 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
186 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
185 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
184 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
183 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
182 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
181 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
180 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
179 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
178 2023-05-03 16:00  E6-2, #2502  Probing microscopic origins of axions by the chiral magnetic effect
177 2020-10-15 17:00  https://bit.ly/3ndIiJn  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
176 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
175 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
174 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
173 2015-10-16 15:00  E6-2, 5th fl. #5318  High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble
172 2018-07-02 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
171 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
170 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
169 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
168 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file