visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-16 16:00 
일시 Jun. 16 (Thu) 4PM 
장소 #1323(E6-2, 1st fl.) 
연사 Hyochul Kim, Samsung Advanced Institute of Technology 

“Quantum information processing using quantum dots and photonic crystal cavities”

 

Jun. 16 (Thu) 4PM, #1323(E6-2, 1st fl.)
Hyochul Kim, Samsung Advanced Institute of Technology

 

The ability to interface light with solid-state quantum bits (qubits) is essential for future development of scalable and compact quantum information systems that operate on ultra-fast timescales. Photons act as ideal carriers of quantum information and can serve as an efficient quantum link between matter qubits. Quantum dots (QDs) provide a promising implementation of a matter qubit, which can store quantum information in both excitonic states and highly stable spin states, providing an atom-like system in a semiconductor platform. By coupling these QDs to optical nano-cavities it becomes possible to achieve the strong coupling regime where a QD can modify the cavity spectral response, providing an efficient light-matter interface.
In this talk, I will explain that the qubit state of a photon can be controlled by a single solid-state qubit composed of a QD strongly coupled to a photonic crystal cavity.  The QD acts as a coherently controllable qubit system that conditionally flips the polarization of a photon reflected from the cavity on picosecond timescales, which implements a controlled NOT logic gate between the QD and the incident photon. Furthermore, the spin of a single electron or hole trapped in a charged QD can be used as a solid-state qubit with long coherence time. I will discuss our recent experimental realization of a quantum phase switch using a solid-state spin confined in a QD strongly coupled to a photonic crystal cavity, where the switch applies a spin-dependent phase shift on a photon.


Contact: Yoonsoo Kim (T.2599)

번호 날짜 장소 제목
193 2022-01-18 14:00  KI bldg. 5th fl. Room B501 & Zoom  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
192 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
191 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
190 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
189 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
188 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
187 2022-03-18 11:00  Online seminar  (응집물리 세미나) Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids file
186 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
185 2022-03-25 11:00  E6-1 #1323  (응집물리 세미나) Hund's metallicity in ruthenate systems file
184 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
183 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
182 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
181 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
180 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file
179 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
178 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
177 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
176 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
175 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
174 2022-04-15 11:00  Online seminar  (응집물리 세미나) First-principles studies of polar oxides and their applications file