visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-12-03 16:00 
일시 2015/12/03, 4PM 
장소 E6-2, #1323 
연사 Dr. Sang-Yun Lee (3rd institute of Physics, University of Stuttgart, Germany) 

Hybrid solid state spin qubits in wide bandgap semiconductors

 

Dec. 3 (Thu), 4:00 p.m. , Seminar Room(#1323)
Dr. Sang-Yun Lee, 3rd institute of Physics, University of Stuttgart, Germany

 

There has been a growing interest in quantum bit (qubit) research over the last decades to realize quantum computation, which will allow faster computation of complex problems, effective simulation of quantum phenomena, and encrypted quantum communication. Spins of electrons and nuclei of point defects in solids, so-called solid-state spin qubits, have been considered as leading contenders, since quantum devices based on solids can be easily integrated into modern electronic devices. In order to realize efficient control and readout of long-lived qubits, hybrid quantum systems consisting of coupled electron and nuclear spins in diamond have been suggested. In these systems, the single nuclear spin is used as long-lived quantum memories thanks to its long coherence time, while the electron spin serves as a readout gate and an ancillary qubit for initializing the nuclear spin. In my presentation, I’ll introduce hybrid spin qubits based on isolated deep defects in wide bandgap semiconductors such as diamond and silicon carbide, and their applications for quantum information processing and quantum metrology.


Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
284 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
283 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
282 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
281 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
280 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
279 2024-12-06 16:00  E6-2 #1323  [Physics Seminar] Vladimir Y. Chernyak (12/6(Fri.) 16:00 / E6-2 #1323, Professor, Department of Chemistry, Wayne State University)
278 2024-11-30 10:30  E6-2 #1323  Joon Young Park (Harvard University, Research Associate) / 11.30 (Sat,) 10:30, E6-2 #1323
277 2024-07-18 11:00  E6-2 #1323  Acousto-electric non-local detection of magnon-phonon coupling
276 2023-03-24 11:00  E6-2 #1323  (응집물리 세미나)Floquet simulators of topological surface states in isolation
275 2023-03-30 16:00  E6-2 #1323  (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer
274 2023-01-09 16:00  E6-2 #1323  Non-Hermitian Hopf-bundle Matter. Moon Jip Park (IBS-PCS)
273 2023-01-10 16:00  E6-2 #1323  Terahertz Spectroscopy of Quantum Materials, Jae Hoon Kim (Yonsei University)
272 2023-01-11 16:00  E6-2 #1323  Non-abelian anyons and graph gauge theory on a superconducting processor, Eun-Ah Kim (Cornell University/Ewha Womans University)
271 2023-01-12 16:00  E6-2 #1323  Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
270 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
269 2023-04-06 16:00  E6-2 #1323  (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics
268 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
267 2023-01-11 11:00  E6-2 #1323  Directly proving magnetoelastic coupling in a soft ferromagnet using Lorentz 4D-STEM file
266 2023-03-16 16:00  E6-2 #1323  (광학분야 세미나) Investigation of 3D cell mechanics using refractive-index tomography
265 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method