visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-12-14 15:00 
일시 Thursday, December 14, 2017 at 3:00 pm 
장소 Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus 
연사 Chunglee Kim (KASI) 

Since 2015, the advanced LIGO (Laser Interferometer Gravitational-wave Observatory) in USA and the advanced Virgo in Europe have been successfully discovering black holes and neutron stars via gravitational waves (GWs) in cosmological distances. After the original discovery of a black hole binary (BBH, GW150914) by LIGO, more BBHs are confirmed. The observed waveform of GWs from BBH coalescences (inspiral-merger-ringdown phases) are well described by Einstein's general relativity as well as approximations. LIGO-Virgo's another major breakthrough was thr discovery of GW170817. It is the first extragalactic neutron star - neutron star binary (NS-NS). It turned out that GW170817 is a progenitor of GRB170817A (independently discovered by the Fermi space telescope). Within 24 hrs since the discovery of GW170817, extensive international observation campaign were made using electromagnetic waves (from gamma rays to radio) as well as neutrinos. GW170817 will be recorded as one of the most successful global multi-messenger effort. With the discoveries of BBHs and NS-NS by LIGO and Virgo, GW astronomy has truly begun. The next decades will be a golden era for stellar astrophysics and many surprises are expected. Furthermore, cosmology with GWs seems also promising. Distance measure by GWs for GW170817 (at 40 Mpc) is already powerful enough to put constraints on the Hubble constant. In future, there will be a global network of GW observatories on Earth and in space and broader frequency ranges will be accessible in GWs. In this talk, I will present the highlights of GW astronomy and astrophysics based the LIGO-Virgo observations so far. I will also discuss the prospects of multi-messenger astronomy.

번호 날짜 장소 제목
282 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
281 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy
280 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
279 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
278 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
277 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
276 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
275 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
274 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
273 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
272 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
271 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
270 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
269 2023-03-16 16:00  E6-2 #1323  (광학분야 세미나) Investigation of 3D cell mechanics using refractive-index tomography
268 2023-01-09 16:00  E6-2 #1323  Non-Hermitian Hopf-bundle Matter. Moon Jip Park (IBS-PCS)
267 2023-01-10 16:00  E6-2 #1323  Terahertz Spectroscopy of Quantum Materials, Jae Hoon Kim (Yonsei University)
266 2023-03-24 11:00  E6-2 #1323  (응집물리 세미나)Floquet simulators of topological surface states in isolation
265 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
264 2023-04-06 16:00  E6-2 #1323  (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics
263 2023-03-30 16:00  E6-2 #1323  (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer