Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms
2018.06.12 14:21
장소 | E6-2. 2nd fl. #2502 |
---|---|
일시 | Jun. 18 (MON), 10:00 AM |
연사 | Dr. Thibault VOGT |
Physics Seminar
“Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms”
Centre for Quantum Technology, National University of Singapore
The very large transition dipole moments of Rydberg atoms are responsible for strong long-range dipole-dipole interactions as well as very large couplings to external fields. Because of this property, Rydberg atoms have found direct applications for quantum sensing, quantum simulation, and non-linear optics at the few-photons level. I will describe a few examples realized in the Rydberg atom group at CQT.
In the first part of the talk, I will present our recent demonstration of coherent microwave-to-optical conversion via frequency mixing in Rydberg atoms [1]. In contrast to other physical systems being explored, our scheme requires no cavity and allows for free-space and broadband conversion due to the strong coupling of microwaves to Rydberg transitions. This result is promising for future quantum communication networks, as broadband interconversion of microwave and optical fields will be essential for connecting superconducting qubits and photonic qubits. I will discuss the recent strategies that we have developed for improving the efficiency of the conversion, which include the demonstration of three-photon electromagnetically induced transparency (EIT), and collinear frequency mixing [2,3].
In the second part, I will present our long-term goal of demonstrating spatially resolved imaging of Rydberg atoms, using Rydberg EIT in the presence of long-range dipole-dipole interactions. I will describe diverse characterizations of the effect of interactions on Rydberg electromagnetically induced transparency, and show that Lévy statistics describes well this many-body system [4,5].
[1] Han, J., Vogt, T., Gross, C., Jaksch, D., Kiffner, K., and Li, W. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms, Phys. Rev. Lett. 120, 093201 (2018)
[2] Vogt, T., Gross, C., Gallagher, T. F., and Li, W., Microwave-assisted Rydberg Electromagnetically induced transparency, arXiv:1802.00529, accepted for publication in Opt. Lett. (2018)
[3] Vogt, T., Gross, C., Han, J., and Li, W., Efficient microwave-to-optical conversion using Rydberg atoms, under preparation (2018)
[4] Han, J., Vogt, T., and Li, W., Spectral shift and dephasing of electromagnetically induced transparency in an interacting Rydberg gas, Phys. Rev. A 94, 043806 (2016)
[5] Vogt, T., Han, J., Thiery, A., and Li, W., Lévy statistics of interacting Rydberg gases, Phys. Rev. A 95, 053418 (2017)
Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)
Department of Physics, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
132 | DEC. 27 (Thu), 04:00 PM | E6-2. 1st fl. #1323 | Prof. Na Young Kim |
Quantum Innovation (QuIN) Laboratory
![]() |
131 | Sep. 27 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Joon Sue Lee |
Spin-charge conversion in topological insulators for spintronic applications
![]() |
130 | Nov. 9 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Donghun Lee |
Quantum sensing and imaging with diamond defect centers for nano-scale spin physics
![]() |
129 | Apr. 28 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. JeongYoung Park Graduate School of EEWS, KAIST | Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion |
128 | Nov. 9 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Pilkyung Moon |
Moiré superlattices – from twisted bilayer graphene to quasicrystal
![]() |
127 | DEC. 11 (Tue), 04:00 PM | E6-2. 1st fl. #1323 | Prof. Hiroshi Shinaoka |
Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations
![]() |
126 | Jun. 2 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Euyheon Hwang(황의헌) |
Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal)
![]() |
125 | Sep. 22 (Fri.), 01:00 PM | E6-2. 1st fl. #1323 | Dr. EunSeong Kim / Department of Physics, KAIST |
Superconductor-metal-insulator transition in thin Tantalum films
![]() |
124 | Oct. 12 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Daniel Kyungdeock Park |
Quantum Advantage in Learning Parity with Noise
![]() |
123 | May. 12 (Fri.), 01:30 PM | E6-2. 1st fl. #1323 | Dr. Young Kuk Kim | Topological Dirac insulator |
122 | Sep. 22 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. GilHo Lee / Department of Physics, POSTECH |
Quantum Electronic Transport in Graphene Hybrid Nanostructures
![]() |
121 | Nov. 1 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Ju-Jin Kim |
Electron transport through weak-bonded contact metal with low dimensional nano-material
![]() |
120 | Mar. 16 (Fri.), 04:0 PM | E6-2. 1st fl. #1323 | Dr. YoungDuck Kim |
Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics
![]() |
119 | Mar. 29 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Taeyoung Choi |
Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM
![]() |
118 | Apr. 19 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Seok Kyun Son |
Graphene and hBN heterostructures
![]() |
117 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |
116 | Dec. 26 (Wed.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Isaac H. Kim |
Brane-like defect in 3D toric code
![]() |
115 | May. 25(Wed), 4pm | E6-2. 1st fl. #1323 / Zoom | Dr. Sungwoo Hong (Enrico Fermi Institute at University of Chicago) | Uncovering New Lampposts for Dark Matter: Continuum or Conformal |
114 | Apr. 01 (Fri.) 2:30 PM | E6-2. 1st fl. #1501 | Dr. KICHEON KANG, Chonnam National University | Interference of single charged particles without a loop and dynamic nonlocality |
113 | Apr. 01 (Fri.) 4:15 PM | E6-2. 1st fl. #1501 | Dr. JONG SOO LIM, KIAS | Cotunneling drag effect in Coulomb-coupled quantum dots |