visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-06 15:30 
일시 April 6, 2016 (Wed), 3:30 PM 
장소 E6-2, RM #1323 
연사 Dr. Andrei Matlashov (Los Alamos National Laboratory) 

Superconducting Quantum Interference Devices for Precision Detection  
 
Dr. Andrei Matlashov (Los Alamos National Laboratory)
April 6, 2016 (Wed), 3:30 PM

E6-2, RM #1323
 
Abstract:  

Superconducting weak-link junctions and Quantum Interference Devices have been invented 50 years ago. This invention has prompted some interesting quantum physics, but the most significantly SQUIDs have brought a break-through to the field of experimental physics in building practical instruments with signal resolution close to the theoretical limit. This development has fundamentally changed experimental physics and precision instrumentation. 
   
 The first immediate consequence of invention of SQUID-based instrumentation was the appearance of Biomagnetism – a research field associated with measurements of extremely weak magnetic fields of biological origin, such as magneto-cardiography or MCG and magneto-encephalography or MEG. SQUID technology has significantly improved signal resolution in multiple areas of research, which had notable effects in the fields of biology, chemistry, astronomy, many applied engineering areas, and experimental physics, including elementary particle physics and axions search. 
 

In this presentation, I will briefly review my more than 30 years of experience working in development of SQUID-based instrumentation in various fields of application. It includes Biomagnetism, non-destructive evaluation, ultra-low field magnetic resonance imaging, explosive detection, and magnetic relaxometry with nano-markers. I will also discuss SQUID applications in experimental physics including elementary particle physics.  

번호 날짜 장소 제목
287 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
286 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
285 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
284 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
283 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
282 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
281 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
280 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
279 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
278 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
277 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
276 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
275 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
274 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
273 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
272 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
271 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
270 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
269 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
268 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities