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and a-maximization review 4

3 A new duality proposal for the WAk SCFTs 8
3.1 N = 1 gaugings of the Dp[SU(N)] Argyres-Douglas theories 8
3.2 Flow from T0 → Wu0 12
3.3 Duality checks 13
3.4 Supersymmetry enhancement for Nf = 2N and p = 2 17
3.5 Case study: dualities for the WA2 SCFT with N = 3 19

4 Conclusions and speculations for the D- and E-series 21

A SCFT conventions 23
A.1 N = 2 23
A.2 N = 1 23

B Facts about the Dp[SU(N)] SCFTs 24

1 Introduction

One of the many achievements of supersymmetry has been to shine a light on a host of
nontrivial, interacting superconformal fixed points in four and greater dimensions. In many
interesting cases, these superconformal field theories (SCFTs) exhibit dualities, which then
provide a powerful window into their strong coupling dynamics. In the present context, a
duality between two field theories means that they belong to the same universality class,
flowing at low energies to the same fixed point, and thus describing precisely the same IR
physics. Duality is an especially useful tool when it relates a strongly-coupled quantum
field theory (QFT) to a weakly-coupled one; in such cases, the weakly-coupled dual can be
fruitfully used to ascertain properties of the QFT that were inaccessible from the original
description. The quintessential example of such a supersymmetric duality is Seiberg duality
of N = 1 supersymmetric QCD in four dimensions [1], which illuminates the IR phase of
the theory in the region that the magnetic dual is weakly coupled.

In this work we revisit N = 1 adjoint supersymmetric QCD in four dimensions, with
gauge group SU(N), Nf flavors of fundamental and antifundamental chiral multiplets,
and one adjoint chiral multiplet X. The interacting SCFTs that can be reached via
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renormalization group (RG) flow from this class of gauge theories are classified by their
superpotential [2–4],

WAk
= Tr Xk+1 , (1.1)

labeled for the identification of the polynomial in X with the Ak-type singularity. (More
generally, when allowing for the maximum number of two adjoint chiral multiplets compatible
with asymptotic freedom, the possible SCFTs are labeled by Arnold’s ADE simple surface
singularities [5].) The WAk

SCFTs possess conjectured Seiberg-like dualities (called as
Kutasov-Schwimmer dualities) within a conformal window of N and Nf [2, 3], where the
dual has SU(kNf − N) gauge group and additional superpotential terms. Much as in
Seiberg’s original duality, fundamental fields in one description map to composite operators
in the other, and strong and weak coupling are interchanged.

We propose a new dual description of the WAk
SCFTs, consisting of a strongly-coupled,

inherently non-Lagrangian N = 2 SCFT coupled to N = 1 vector and chiral multiplets.
The non-Lagrangian sector of this dual is of Argyres-Douglas type, named as such for
the seminal example of an interacting SCFT with relatively non-local degrees of freedom,
originally found by tuning to special points on the moduli space of N = 2 gauge theories [6].
The Argyres-Douglas theories that play a role in our constructions are the N = 2 Dp[G]
SCFTs [7–9], which can be constructed by compactifying the 6d (2,0) SCFTs on a sphere
with an irregular puncture [7, 10, 11]. Key to the proposed duality is the observation that
the Dp[G] theories behave (in a sense that we will make precise) like chiral multiplets that
transform in the adjoint representation of G, and have fractional scaling dimension upon a
suitable superpotential deformation [12–15]. There have been multiple clues that the Dp[G]
theories behave like free hypermultiplets (especially for p = 2), as observed e.g. via the
similarities of their Schur indices [16–19], and our duality can be thought of as another
incarnation of the “simplicity” of the Dp[G] theories. More precisely, we find that upon
N = 1 gauging and deformation, the Dp=k[G] theories behave like chiral multiplets in the
adjoint of G with a superpotential (1.1) of Ak type.

Below we perform a variety of checks of the duality, including the matching of the
central charges and ’t Hooft anomalies, global symmetries, and superconformal indices in
the Schur limit. The mapping between the two sides of the duality is nontrivial; for instance,
the truncated mapping between the mesons and baryons of adjoint SQCD and the proposed
dual follows from a nontrivial Higgs branch relation in the Argyres-Douglas SCFT. The
duality is proposed to hold within a certain conformal window of N and Nf which depends
on the order k of the superpotential, and which we carefully determine below. In the special
case of the SU(3) theory with cubic Tr X3 superpotential, we demonstrate that the full
superconformal indices on both sides of the duality match.

On the one hand, the proposed duality is a new example of a Lagrangian dual for a
non-Lagrangian QFT (in the spirit of e.g. [14, 15, 20–31]), providing the opportunity to
glean new insights into the strongly-coupled dual. For example, it suggests a quantum
truncation of the chiral ring of the N = 1 deformed Argyres-Douglas theory, much as the
proposed Seiberg-like dualities for the D and E-series generalizations of the WAk

SCFTs
rely on a proposed quantum truncation [32, 33] (see also [34]). On the other, our proposal
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suggests the possibility for a zoo of new dualities of strongly-coupled N = 1 gauge theories
built from deformed Dp[G] theories, which will be interesting to explore.

We highlight that when p = 2 with Nf = 2N , our dual theory (further deformed
by a superpotential term) flows to superconformal QCD with N = 2 supersymmetry,
thereby exhibiting supersymmetry enhancement. The supersymmetry enhancement works
in a very analogous fashion as to the cases studied in [14, 15], except that we need a
superpotential term to trigger the RG flow to the N = 2 fixed point. This observation can
be easily generalized to quiver gauge theories, and would be interesting to explore further
in this context.

Outline. The outline for the rest of this paper is as follows. In section 2, we discuss
N = 1 adjoint SQCD in four dimensions and its deformation by the superpotential (1.1),
reviewing the properties of the WAk

SCFTs. In section 3, we describe the N = 1 theory
which is proposed to be dual to adjoint SQCD. After studying the properties of the fixed
point of the dual theory, we perform various checks of the duality, including the matching
of gauge-invariant operators, central charges, and superconformal indices. We conclude in
section 4 with a discussion on the possible generalization of the duality to D-type and E-type
SCFTs. In appendix A, we fix our notation for the N = 1 and N = 2 supersymmetries.
Appendix B is devoted to a review of the Dp[SU(N)] Argyres-Douglas theories.

2 The WAk
fixed points of N = 1 adjoint SQCD

In this section we review the salient features of N = 1 SU(N) adjoint SQCD in four
dimensions, deformed by the WAk

superpotential (1.1).

2.1 Preliminaries

We consider the four-dimensional SU(N) gauge theory consisting of an N = 1 vector multi-
plet, Nf chiral multiplets Q and Q̃ transforming in the fundamental and antifundamental
representations of the gauge group (the quarks), and one chiral multiplet X transforming in
the adjoint representation of the gauge group. We refer to the IR fixed point of the theory
without superpotential as the Â SCFT, following the notation of [5].1

We deform by the following superpotential for the adjoint X,

WAk
= Tr Xk+1 . (2.1)

In the case of k = 1, the superpotential gives a mass to X, and at low energies the resulting
theory is SQCD (with no adjoint). For k > 1, (2.1) is relevant at the Â fixed point only if the
number of flavor Nf is below a maximum value that depends on k, which we review in some
detail below. In this range, the superpotential drives the theory to a new fixed point that
we will refer to as the WAk

SCFT. The phase structure of the theory for smaller values of
Nf is elucidated by the magnetic dual,2 an SU(kNf −N) gauge theory which becomes more
weakly coupled as the original electric description becomes more strongly coupled [2–4].

1This gauge theory generically flow to a product CFT where some of the gauge-invariant operators
decouple along the RG flow [35–37].

2Although, note that there is no known dual for the Â fixed point, and we will not suggest one here.
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SU(Nf )L SU(Nf )R U(1)B U(1)R at WAk

Q □ 1 1/N 1− N
Nf

2
k+1

Q̃ 1 □ −1/N 1− N
Nf

2
k+1

X 1 1 0 2
k+1

Wα 1 1 0 1

Tr Xj 1 1 0 2j
k+1

Mj □ □ 0 2
(
1 + j−1−2N/Nf

k+1

)
B(n1,...,nk) N -index

antisym
1 1 2

k+1

(∑k
ℓ=1 nℓℓ + N

(
k−1

2 − N
Nf

))
Table 1. The charges of the fields under the global symmetries, with U(1)R given at the WAk

fixed
point. The lower part of the table lists the charges of the gauge-invariant operators listed in (2.3).

The anomaly-free global continuous symmetry is

SU(Nf )L × SU(Nf )R ×U(1)B ×U(1)R , (2.2)

under which the microscopic fields have charges given in table 1.3 The chiral ring of operators
consists of the gauge-invariant products of these fields, subject to relations from e.g. the
superpotential. A basis of adjoint-valued products is given by operators Xj−1, j = 1, . . . , α.
For the Â theory, α = N due to a classical matrix relation for X that relates the operator
XN to lower powers Xℓ<N ,4 while the WAk

case is classically truncated at α = k due to the
superpotential F -term. Gauge-invariant operators are given by taking traces, or contracting
with the Q and Q̃ to form dressed quark operators, leading to the following,

Tr Xj , j = 2, . . . , α

Mj = Q̃Xj−1Q , j = 1, . . . , α (2.3)

B(n1,...,nj) = Qn1 (XQ)n2 · · · (Xj−1Q)nj ,
j∑

ℓ=1
nℓ = N ; nℓ ≤ Nf ; j = 1, . . . , α .

We will refer to the Mj as generalized mesons, and the B(n1,...,nj) as generalized baryons.
The charges of these operators are given in the bottom section of table 1. For a given j,
there are ( jNf

N
) baryons of the form (2.3), where the N color indices are contracted with

an ϵ tensor, as well as analogous anti-baryons B̃ composed of the antifundamental Q̃ fields.

2.2 Flow from Â → WAk and a-maximization review

The flow from the Â fixed point to the WAk
fixed point of adjoint SQCD occurs within

a range of Nf that depends on N and k, and was analyzed in detail in [35]. Here we
3There are finite symmetries which will not play a role in our discussion. The theory without superpotential

has an additional non-anomalous U(1) under which X, Q, Q̃ transform, which is broken by (2.1).
4For instance, for SU(2) one has X2 = 1

21TrX2, while for SU(3), X3 = 1
2 X TrX2 + 1

31TrX3.
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review this analysis, with the two-fold motivation of first clarifying the range of parameters
for which we expect a conformal window with our proposed Argyres-Douglas dual, and
second providing a case study in the procedure of a-maximization that will be useful in
later sections.

The a and c central charges in a superconformal field theory are given in terms of the
superconformal U(1)R symmetry as [38],

a = 3
32
(
3Tr R3 − Tr R

)
, c = 1

32
(
9Tr R3 − 5Tr R

)
. (2.4)

The exact superconformal R-symmetry at the fixed point can be a mixture of the original
U(1)R with U(1) flavor symmetries. Then, the R-charges of the fields at a given fixed point
are determined by locally maximizing the a central charge over all possible U(1)R symmetries,
in a process known as a-maximization [39]. Since the dimensions of chiral primary operators
are given in terms of their R-charges as ∆N=1(O) = 3

2R(O), this procedure equivalently
fixes their scaling dimensions at the fixed point.

Let us see how this works at the Â fixed point. The trial a-function, given in terms of
the R-charges Ri of the scalars in representations ri of the gauge group G, is

a = 3
32

(
2|G|+

∑
i

|ri|
(
3(Ri − 1)3 − (Ri − 1)

))
. (2.5)

The R-charges of the fields are also constrained by the condition of chiral anomaly cancel-
lation TrU(1)RSU(N)2 = 0, which is equivalent to the vanishing of the β-function, and
implies that the quark and adjoint R-charges are related as,

R(Q) = R(Q̃) = 1− N

Nf
R(X) . (2.6)

The trial a-function (2.5) for the Â theory evaluates to

a
Â
= 3

32

(
2(N2 − 1) + 2NNf

(
3(R(Q)− 1)3 − (R(Q)− 1)

)
+(N2 − 1)

(
3(R(X)− 1)3 − (R(X)− 1)

))
.

(2.7)

Substituting (2.6) into (2.7) and maximizing with respect to R(X) yields

R(X) =
N2 − 1− 1

3

√
1− N4 + 20N6/N2

f − 16N4/N2
f )

N2 − 1− 2N4/N2
f

, (2.8)

with R(Q) then determined by (2.6).
These trial R-charges are corrected when a gauge-invariant operator O hits or falls

below the unitarity bound R(O) = 2/3, signaling that the operator has become free and
should be decoupled. Then, a is corrected by

acorr = − 3
32
(
3(R(O)− 1)3 − (R(O)− 1)

)
. (2.9)
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Adding (2.9) to (2.7) and re-maximizing will yield the corrected R-charges. More generally,
any accidental U(1) symmetry which emerges at low energies might mix with U(1)R at the
fixed point, and the results of a-maximization are only reliable when all such accidental
symmetries have been taken into account.

Once all apparent operator decouplings have been taken into account, and assuming no
unforeseen accidental symmetries, the results of a-maximization at the Â fixed point can
then be applied to determine whether the deformation by TrXk+1 is relevant and drives the
theory to the WAk

fixed point. If this is the case, then the R-charges at the new fixed point
are fixed by the superpotential (2.1) (which must have R-charge 2), and the anomaly-free
condition (2.6), which together enforce that

R(X) = 2
k + 1 , R(Q) = R(Q̃) = 1− N

Nf

2
k + 1 . (2.10)

The central charges are then determined to be,

aAk
=

3(−12N4 + N2N2
f (5k2 + k + 2)− N2

f (4k2 − k + 1)
8N2

f (k + 1)3 ,

cAk
=

−36N4 + N2N2
f (16k2 + 5k + 7)− N2

f (11k2 − 5k + 2)
8N2

f (k + 1)3 .

(2.11)

The R-charges of the microscopic fields and gauge-invariant operators at the WAk
fixed

point are given in table 1. We remark that these values of the central charges in (2.11) are
generically not the true values of central charges at the infrared fixed point. The reason
is that generically our gauge theory flows to a product CFT (interacting part times free
fields) which results in accidental symmetry, modifying the central charges.

The range of Nf as a function of N for which the flow to the WAk
fixed point occurs in

adjoint SQCD is restricted by the following considerations:

• Nf ≤ 2N : Nf is bounded from above by the condition of asymptotic freedom of the
gauge theory.

• Nf < (Nmax
f )k: the upper bound on Nf is at most 2N due to the previous bullet

point, but in general is further restricted by the requirement that TrXk+1 is a relevant
operator at the Â fixed point. This bound depends on k. In the Veneziano limit of
large N and large Nf with fixed ratio N/Nf , it was found in [35] to obey

(Nmax
f )k = 6N√

5k2 − 8k + 5
, k = 2, . . . , 15 , N, Nf → ∞ , (2.12)

for the first few values of k.5 For finite values of N and Nf , when no operators
decouple this bound is determined by checking when R(Xk+1) < 2 using (2.8).

• Nf > N/k: Nf is bounded from below by the requirement of a stable vacuum [3].
5In this limit, the mesons are the first gauge invariant operators that violate the unitarity bound and

whose decoupling affects the large-N R-charges, which must be taken into account for k > 15.
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(N, k) (3, 2) (4, 3) (5, 2)
Nf 2 3 4-6 2 3 4 3 4-5 6-10

decouple at Â TrX2 TrX2

decouple at Ak M1, M2, B(2,1) M1 M1, M2 M1 M1, M2 M1

(N, k) (5, 3) (5, 4)
Nf 2 3 4-5 2 3 4

decouple at Â TrX2 TrX2 TrX2 TrX2

decouple at Ak M1, M2, M3 M1 M1, M2 M1

Table 2. For small values of (N, k), we list all the values of Nf for which WAk
is a relevant

deformation of the theory without superpotential, within the regime of vacuum stability Nf > N/k.
For each Nf in this range, we list all operators that decouple at each of the Â and WAk

fixed points.

• Nf > Ndecouple
f : there will also be a lower bound on Nf below which operators

decouple along the flow to the Â fixed point, which can be more restrictive than the
previous bullet point. This decoupling bound follows from checking (using (2.8)) when
the smallest dimension operator TrX2 crosses the unitarity bound, leading to

Ndecouple
f = 2N2

√
10N2 − 6

. (2.13)

For values of Nf smaller than Ndecouple
f , the R-charges must be corrected due to

decoupling of the free operators before determining whether TrXk+1 is a relevant
deformation.

To illustrate these bounds, in table 2 we give the allowed values of N/k < Nf < (Nmax
f )k

for which TrXk+1 is relevant and drives a flow to a new fixed point for small values of N

and k, including (1) which operators decouple at the Â fixed point if Nf < Ndecouple
f , and

(2) which operators decouple at the WAk
fixed point for these values of N and Nf .6,7 We

will use these considerations in the next section to examine the conformal window for which
the proposed Argyres-Douglas duals describe a flow to the same fixed point.

Before concluding this section, let us comment on a subtle detail with regards to the
final bullet point above. For Nf < Ndecouple

f , it might be the case that some of the operators
Oi which generate the chiral ring of the WAk

SCFT — and which do not themselves decouple
at the WAk

fixed point — actually decouple at the Â fixed point before adding the relevant
superpotential deformation. In this case, deforming from the Â SCFT by WAk

drives the
theory to an interacting fixed point plus free sector which we would not identify as the WAk

6No Casimir operators TrXj decouple at the WAk fixed points for the examples listed in table 2, but
note that for larger values k ≥ 5 some of these operators will decouple, since R(Xj) = 2j/(k + 1).

7Not all of the WAk fixed points listed in table 2 are interacting (as is obvious from the perspective of
the SU(kNf − N) Kutasov-Schwimmer dual); in the cases of (N, k) = (3, 2) with Nf = 2, (N, k) = (5, 2)
with Nf = 3, and (N, k) = (5, 3) with Nf = 2, the IR theory after deformation by WAk is free.
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SCFT. This phenomenon occurs in the examples listed in table 2 for which TrX2 decouples
at the Â fixed point. In these cases, the Â flow does not provide a UV completion of the
WAk

fixed point with its full spectrum intact.

3 A new duality proposal for the WAk
SCFTs

In this section we introduce the Dp[G = SU(N)] Argyres-Douglas theories that participate
in the proposed duality. We describe their gauging by N = 1 vector multiplets, and examine
the conditions for a renormalization group flow to the dual fixed point upon appropriate
superpotential deformation.

3.1 N = 1 gaugings of the Dp[SU(N)] Argyres-Douglas theories

The theories of type Dp[SU(N)] are strongly-coupled N = 2 SCFTs with at least SU(N)
flavor symmetry [7–9], and whose salient properties are reviewed in appendix B. We restrict
throughout this work to the case of p, N coprime, when the flavor symmetry is exactly
SU(N) and many formulae simplify.8 We furthermore restrict the range of the positive
integer p to 2 ≤ p < N , since p = 1 trivializes the Dp[SU(N)] theory, and since we will only
expect a possible duality for p < N .

Chiral operators. The Coulomb branch of the Dp[SU(N)] theories with gcd(p, N) = 1
is parameterized by scalar primary operators uj,s of dimension [7–9]

∆(uj,s) =
[
j − N

p
s

]
+
+ 1 , (3.1)

where [x]+ = x for x > 0 and 0 for x ≤ 0, and j = 1, 2, . . . N−1, s = 1, 2, . . . p−1. We denote
the (p − 1) Coulomb branch operators of lowest dimension by ui, whose dimensions satisfy

∆(ui) =
p + 1 + i

p
, i = 0, 1, . . . p − 2 . (3.2)

The remaining 1
2(p − 1)(N − 3) Coulomb branch operators form towers above each of the

lowest-dimension ui.
Each Coulomb branch multiplet contains a level-two descendent scalar chiral operator,

which upon decomposing the N = 2 multiplet into N = 1 components, is the primary
operator of an N = 1 chiral multiplet. We denote by vi these descendants of the ui, whose
dimensions satisfy ∆(vi) = ∆(ui) + 1, in terms of ∆(ui) given in (3.2),

There is also a conserved current multiplet for the SU(N) flavor symmetry, whose
primary is the moment map operator µ with ∆(µ) = 2, and which transforms in the adjoint
representation of SU(N). This operator satisfies the following chiral ring relations [16, 17, 40],

Trµj = 0 ∀j , µp
∣∣
adj = 0 , (3.3)

where O
∣∣
adj denotes the adjoint part of O.

8The choice gcd(p, N) = 1 also implies that the Dp[SU(N)] theory does not admit a dual Lagrangian
quiver description [9].
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Dp[SU(N)] N Nf

Q

Q̃

Figure 1. Coupling the Dp[SU(N)] theory to N = 1 SQCD.

N = 1 deformation. One way to deform the Dp[G] theories is to gauge their G-flavor
symmetry. One can in general gauge the diagonal SU(N) flavor symmetry of one or multiple
Dpi [SU(N)] blocks with either an N = 2 vector multiplet (see [9, 41–43]), or an N = 1
vector multiplet (as was considered in [14, 44]), where the latter breaks N = 2 to N = 1
supersymmetry. Here we gauge the Dp[SU(N)] theory with an N = 1 vector multiplet,
accomplished by adding to the Lagrangian the coupling

L ⊃
∫

d4θ V a
µ J µa , (3.4)

where V a
µ is the SU(N) vector multiplet and J µa is the conserved current multiplet, and a

is an adjoint index.
We furthermore will be interested in coupling Nf flavors of N = 1 chiral multiplets

Q (Q̃), which transform in the (anti)fundamental representation of the now-gauged SU(N)
symmetry. In other words, this is N = 1 SU(N) SQCD coupled to the Dp[SU(N)] theory, as
pictorially depicted in figure 1. The Dp[SU(N)] block contributes to the 1-loop β-function
as
(
1− 1

p

)
amount of adjoint chiral multiplets (which is encoded in the anomaly coefficient

TrRGG with G denoting the generators of SU(N) symmetry), leading to the following
condition for asymptotic freedom of the resulting gauge theory,

Nf ≤ N

(
2 + 1

p

)
. (3.5)

Flow to T0. Within the range (3.5), one can ask if the system of figure 1 flows to an
N = 1 SCFT at low energies, which we will denote by T0. We will first study this fixed
point, before adding a further deformation to flow to the proposed dual of the WAk

SCFTs.
The answer to whether or not there is an interacting IR fixed point will depend on

the choices of integers p, N , and Nf , where recall that we have restricted to p, N co-prime,
and 2 ≤ p < N . If the answer is affirmative, then the superconformal R-symmetry at the
fixed point is determined by a-maximization as a linear combination of the R-symmetry
R0 associated to the N = 1 subalgebra of the original N = 2 U(1)r × SU(2)R R-symmetry,
given in (A.4), and a flavor symmetry F given in (A.5), as

R(ϵ) = R0 + ϵF , R0 = 1
3r + 4

3I3 , F = −r + 2I3 . (3.6)

See appendix A for our supersymmetry conventions, and section 2.2 for a review of a-
maximization in the context of adjoint SQCD. The R-charges of the chiral fields at the
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putative fixed point are correspondingly given in terms of ϵ as,9

R(ui) =
2(1 + p + i)(1− 3ϵ)

3p
, R(vi) =

2(1 + i + 2p − 3ϵ(1 + i − p))
3p

R(µ) = 4
3 + 2ϵ , R(Q) = R(Q̃) = 1− N

Nf

(1 + 2p + 3ϵ(p − 1))
3p

.

(3.7)

The gauge-invariant chiral operators formed from these fields include: the scalars ui,
vi which derive from the Coulomb branch multiplets of the Dp[SU(N)] theory; traces of
products of the moment map operators Trµj ; mesonic operators of the form Mj = Qµj−1Q̃;
as well as (anti)baryonic operators formed from N (anti)quarks Q (Q̃) and powers of µ,
which are analogous to the baryonic operators (2.3) in adjoint SQCD. However, due to (3.3)
the operators Trµj are absent from the chiral ring, and the mesonic and baryonic operators
involving powers of µj−1 are truncated at j = p. The R-charges of the remaining chiral ring
operators are,10

O R(O)

ui, i = 0, . . . , p − 2 2(1+p+i)(1−3ϵ)
3p

vi, i = 0, . . . , p − 2 2(1+i+2p−3ϵ(1+i−p))
3p

Mj = Qµj−1Q̃, j = 1, . . . , p 2
(
1− N

Nf

(1+2p+3ϵ(p−1))
3p

)
+ (j − 1)

(
4
3 + 2ϵ

)
B(ni,...,np) N

(
1− N

Nf

(1+2p+3ϵ(p−1))
3p

)
+∑p

ℓ=1 nℓ(ℓ − 1)
(

4
3 + 2ϵ

)
(3.8)

The trial central charges of the T0 theory can be computed as follows. Using the ’t Hooft
anomaly coefficients from appendix B, the contributions from the Dp[SU(N)] block are,

a(ϵ)Dp[SU(N)] =
(N2 − 1)(1− p)(1− 3ϵ)(1 + 3ϵ(1 + 3ϵ)− p(2 + 3ϵ)2)

48p
, (3.9)

c(ϵ)Dp[SU(N)] =
(N2 − 1)(1− p)(1− 3ϵ)(3ϵ(1 + 3ϵ)− p(2 + 3ϵ)2)

48p
, (3.10)

where evidently taking ϵ = 0 reproduces the Dp[SU(N)] central charges (B.5). We add to
these the contributions from the N = 1 vector multiplet,

aN=1 = 3
16(N

2 − 1) , cN=1 = 1
8(N

2 − 1) , (3.11)

as well as the contributions from the quarks Q, Q̃,

a(ϵ)Q = 3
322NNf

(
3R(Q)− 1)3 − (R(Q)− 1)

)
. (3.12)

9Equivalently, the dimensions ∆N=1(O) = 3/2 R(O) at the fixed point can be written as

∆N=1(ui) = (1 − 3ϵ)∆(ui), ∆N=1(vi) = 1 + 6ϵ + (1 − 3ϵ)∆(ui), ∆N=1(µ) = 2 + 3ϵ ,

in terms of ∆(O) the dimension of O in the Dp[SU(N)] theory before gauging.
10In this table we have listed only the subset ui of the Coulomb branch operators present in the theory.
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1 2 3 4 5 6 7
Nf

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

ϵ

(Nf
min)p (2+1/p)N

Figure 2. A plot of the trial ϵ in (3.14) as a function of Nf for N = 3 and p = 2, depicted within
the asymptotic freedom bound (on the right) and bound (3.15) (on the left).

Performing a-maximization on the total,

a(ϵ)T0 = a(ϵ)Dp[SU(N)] + aN=1 + a(ϵ)Q , (3.13)

yields the following expression for the trial ϵ,

ϵ = p3+N2
(

N2/N2
f (1+p−2p2)−p3

)
+p
√

p2(N2−1)(N2(p2+p−1)−p2)+N4/N2
f

(1−p)(N2(2+p)−1−2p)
3(1−p)(N4/N2

f
(1−p)−(N2−1)p2) .

(3.14)

A representative plot of ϵ as a function of Nf appears in figure 2. Substituting this expression
for ϵ into (3.7) yields the trial R-charges for the operators (3.8). The trial R-charges must
be corrected when any operator hits the unitarity bound and becomes free, as can be
determined on a case by case basis.

The range of Nf as a function of N and p for which the flow to the T0 fixed point
occurs is restricted by considerations analogous to those discussed in section 2.2 in the
context of the Â fixed point. In particular:

• Nf ≤ (2 + 1/p)N : Nf is bounded from above by the condition of asymptotic freedom
of the gauge theory, (3.5). In the limit that this bound is saturated, ϵ = 0.

• Nf > (Nmin
f )p: Nf is bounded from below by the requirement that ϵ in (3.14) is

non-imaginary, i.e. that the square root in (3.14) is nonnegative. This results in a
bound

Nf > (Nmin
f )p =

N2
√

(p − 1)(N2(p + 2)− 2p − 1)

p
√

(N2 − 1)(N2(p2 + p − 1)− p2)
≈ N

p
. (3.15)

The assertion that this bound is approximated by N
p follows from the fact that for all

values p and N , (Nmin
f )p given in (3.15) lies between

2√
5

N

p
< (Nmin

f )p ≤ N

p
. (3.16)

– 11 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
2

(N, p) (3, 2) (4, 3) (5, 2)
Nf 4-7 2 3 4-9 6-12

decouple at T0 M1, M2 M1

decouple at Wu0 M1, M2 M1

(N, p) (5, 3) (5, 4)
Nf 2 3 4 5-11 2 3 4 5-11

decouple at T0 M1, M2, M3, v0 M1 M1 M1, M2, M3, v0 M1 M1

decouple at Wu0 M1, M2, M3 M1 M1, M2 M1

Table 3. For some small values of (N, p), we list all the values of Nf for which the T0 → Wu0 flow
occurs, including which operators decouple at each fixed point.

The quantity ϵ is negative within the range (Nmin
f )p < Nf < (2 + 1/p)N , as depicted

in figure 2 for representative values N = 3 and p = 2.

• Nf > Ndecouple
f : there is also a lower bound on Nf below which operators decouple

along the flow to the T0 fixed point, which can be more restrictive than the previous
bullet point. Generically the meson M1 = QQ̃ is the first to hit this bound, at

Ndecouple
f = N

p

1 + p +
√

N2(3− 3p + p2)− p2

2
√

N2 − 1
. (3.17)

Below this value of Nf , the decoupling of operators that become free must be taken
into account in determining the R-symmetry at the fixed point.

3.2 Flow from T0 → Wu0

We next add the superpotential

W = u0 , (3.18)

where u0 denotes the multiplet that includes the lowest dimension Coulomb branch operator
of dimension ∆(u0) = p+1

p (see (3.2)) and scalar superpartner v0. The first task is to
determine the conditions for the superpotential (3.18) to drive a flow to a new Wu0 fixed
point. It turns out that as the number of flavors Nf gets smaller, the dimension of the
Coulomb branch operators ui of the Dp[SU(N)] theory grows. Therefore, we have a further
restriction on the lower bound in (3.15) from requiring that u0 is a relevant operator at the
fixed point. This bound can be determined on a case by case basis; if the trial R-charges
do not need any correcting, then substituting (3.14) into (3.7) yields a lower bound on Nf

as a function of N and p, whereas if operators decouple at the T0 fixed point, this bound
may be pushed to lower values of Nf . In table 3 we give the allowed values of Nf for small
values of N and p that will result in a flow to the Wu0 fixed point, including listing the
decoupling of operators at the T0 fixed point.
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When u0 is relevant, the deformation (3.18) by W = u0 initiates an RG flow to the
Wu0 IR fixed point, and the superconformal U(1)R symmetry is modified such that the
superpotential term has charge two. This fixes ϵ to the value

ϵ = 1− 2p

3(p + 1) , (3.19)

and the central charges to

a =
3
(
−12N4 + N2N2

f

(
5p2 + p + 2

)
+ N2

f

(
−4p2 + p − 1

))
8N2

f (p + 1)3 , (3.20)

c =
−36N4 + N2N2

f

(
16p2 + 5p + 7

)
+ N2

f

(
−11p2 + 5p − 2

)
8N2

f (p + 1)3 . (3.21)

A subset of the gauge-invariant operators that are classically in the chiral ring of the
theory and not removed by the ring relation (3.3) are listed in (3.8). Substituting for ϵ

in (3.19) yields the following R-charges of these operators,

O R(O)

ui, i = 0, . . . , p − 2 2(p+1+i)
p+1

vi, i = 0, . . . , p − 2 2(2+i)
p+1

Mj = Qµj−1Q̃, j = 1, . . . , p 2
(
1− N

Nf

2
1+p

)
+ (j − 1) 2

1+p

B(ni,...,np) N
(
1− N

Nf

2
1+p

)
+∑p

ℓ=1 nℓ(ℓ − 1)
(

2
1+p

)
(3.22)

with scaling dimensions given by ∆N=1 = 3
2R.

For given p and N , one can check which operators decouple in the flow to the Wu0

fixed point, and revise the central charges (3.20) accordingly. The decouplings at the Wu0

fixed point for small values of N and p are given in the bottom lines of table 3.

3.3 Duality checks

We propose that the Wu0 fixed point obtained from the N = 1 deformed Dp[SU(N)] theory
depicted in figure 1 by the superpotential deformation (3.18) is dual to the WAk

fixed
point of adjoint SQCD with p = k. In this subsection we describe a series of checks of
this proposal.11

Operator matching. The matching of the gauge-invariant operators on either side of
the duality proceeds by comparing eq.’s (2.3) and (3.22), leading to,

TrXj ↔ vj−2 , j = 2, . . . , k

Mj ↔ Qµj−1Q̃ , j = 1, . . . , k

B(n1,...,nk) ↔ B(n1,...,nk)

(3.23)

11It was found in [13] that the Wu0 deformation of the stand-alone Dp[G] flows to |G| amount of free chiral
multiplets. In our case, when Dp[G] is coupled to G-gauge fields, it flows to the adjoint chiral multiplet with
superpotential WAp .
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The k − 1 ring generators made from products of X match one-to-one with the k − 1
descendants vj of the Coulomb branch operators in the Argyres-Douglas dual. X and µ

share the same R-charge, as do the quarks on either side of the duality, leading to the
matching of the kN2

f mesons, and baryons. The fact that the mesons and baryons match
one-to-one with no superfluous operators is due to the Higgs branch relations (3.3) on the
Argyres-Douglas side of the duality.

In order for the duality to hold, it must be the case that the superfluous Coulomb
branch operators ui for i = 1, . . . , k − 2, as well as the additional (k − 1)(N − 3) Coulomb
branch and descendant operators which sit in towers above the ui, are removed from the
chiral ring. (The operator u0 is already removed due to the superpotential.) For the special
case of N = 3 and k = 2, no such additional truncation is required, and the chiral operators
evidently match exactly between the two sides of the duality. This case is studied in more
detail in section 3.5 below. For more general N and k, this suggests a quantum chiral ring
relation in the N = 1 gauged Argyres-Douglas theory which is not visible at the classical
level; such relations can sometimes be detected through the superconformal index, e.g.
see [45]. It would be very interesting to understand the origin of this proposed truncation.

We note that in the special case with p = 2 and Nf = 2N this truncation does not
occur. Indeed, the fixed point of this case has N = 2 supersymmetry, and in this case all
the Coulomb branch operators of the D2[SU(N)] theory are needed to explain the matter
content. We will later discuss this issue in section 3.4.

Central charges and ’t Hooft anomalies. The ’t Hooft anomalies match between
the two sides of the proposed duality, by virtue of the fact that the Dk[SU(N)] theory
contributes to the ’t Hooft anomalies as an N = 1 chiral adjoint multiplet with R-charge

2
k+1 . The a and c central charges in each case are given by (2.11) and (3.20), and evidently
match upon identifying p = k.

Conformal window. The conformal window for the proposed dual theories is summarized
by figure 3. As discussed in section 3, the bounds on Nf as a function of N and p for
the N = 1 deformed Argyres-Douglas gauge theory to flow to the Wu0 fixed point lie
within the range N/p ≲ Nf ≤ (2 + 1/p)N , with this range further restricted from below
by checking when u0 is a relevant deformation of the theory without superpotential. This
range can be compared with that discussed in section 2 for the flow from adjoint SQCD
to the WAp fixed point, which occurs within the window N/p < Nf ≤ 2N , and is further
restricted from above by checking when TrXp+1 is a relevant operator in the Â theory
without superpotential. For all values of N and p that we checked, there is a nontrivial
conformal window for which these two regions overlap. For low values of N these are given
by the overlap of tables 2 and 3; for instance,

conformal window

N = 3 k = 2 4 ≤ Nf ≤ 6
N = 4 k = 3 2 ≤ Nf ≤ 4
N = 5 k = 2 6 ≤ Nf ≤ 10

(3.24)
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1

N/k
W̃Ak

relevant
Wu0 relevant

WAk
relevant

2N

2N + N/k

Nf

Adjoint SQCD flows to fixed point

KS dual conformal window

Dk[SU(N)] dual flows to fixed point

Figure 3. A schematic representation of the conformal windows for dual descriptions of the WAk

SCFTs. The overlap of the green and red regions corresponds to the conformal window of the
proposed duality with the N = 1 deformed Dk[SU(N)] theory. Here W̃ refers to the superpotential
for the Kutasov-Schwimmer (KS) dual theory.

A few comments are in order regarding the range of the proposed duality.

• Interestingly, the vacuum stability bound Nf > N/k of the WAk
fixed point approxi-

mately matches onto the necessary bound Nf ≳ N/k derived in (3.15) for the dual
Argyres-Douglas theory to flow to the T0 fixed point.

• In the flow to the WAk
fixed point from adjoint SQCD, the requirement that the

superpotential be relevant lowered the value of Nmax
f , whereas in the Argyres-Douglas

dual this requirement raised the value of Nmin
f . It is precisely these factors that are

most restrictive in carving out the conformal window. This is similar to the scenario in
the Kutasov-Schwimmer dual, where the requirement that the magnetic superpotential
W̃Ak

is relevant raises the bottom of the conformal window (see figure 3).

• However, we emphasize that unlike the case with the magnetic dual, this is not a
strong-weak coupling type of duality in the usual sense. In both the electric description
of the WAk

fixed point and the proposed Argyres-Douglas dual, increasing the number
of flavors brings one closer to the asymptotic freedom bound of the 1-loop β-function.

• One subtlety in determining the conformal window comes from the decoupling of
operators at the T0 fixed point. As in the comments below (2.13), it is sometimes the
case that more operators decouple at the T0 fixed point than at the Wu0 fixed point.
Of the examples in table 3, this is the case e.g. for (N, k) = (5, 3) and (N, k) = (5, 4)
with Nf = 2, since for these values v0 ∼ TrX2 decouples at T0. In such cases, we
would say that the RG flow that begins at T0 does not provide a UV completion of
the WAk

fixed point with all its operator spectrum intact. This is analogous to the
discussion in section 2.2 regarding the flow from Â → WAk

, where this phenomenon
also occurs.
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Superconformal index. The superconformal index of an N = 1 superconformal theory
is defined as [46, 47]

I = Tr(−1)F t3(R+2j2)y2j1
∏

i

aFi
i

= Tr(−1)F pj1+j2+R/2qj2−j1+R/2∏
i

aFi
i .

(3.25)

The trace is taken over the states satisfying ∆ = 3
2R + 2j2 where (∆, j1, j2, R) are the

Cartans of the bosonic subgroup of the superconformal group, denoting the scaling dimension,
Lorentz spins, and R-charge, respectively. Fi denotes the Cartans for the flavor symmetry
generators. The second line is obtained via mapping the fugacities as p = t3y, q = t3/y.
These two forms are used interchangeably. We can compute the full superconformal index
of the Dp[SU(N)] theory for N = 2 and for all p, using the N = 1 Lagrangian of [21–23].
Other than N = 2, only the index of the D2[SU(3)] theory is known. We will consider the
full indices for these low rank gauge groups separately.

Even though the full index for the general Dp[SU(N)] theory is not known, a special
limit of the index known as the Schur index is known to have a particularly illuminating
closed form when p and N are coprime. To define the Schur index, let us first start with a
general N = 2 superconformal index, which takes the form

IN=2(p, q, t) = Tr(−1)F pj1+j2+r/2qj2−j1+r/2tI3− 1
2 r , (3.26)

where I3 and r denote the Cartan of the SU(2)R and the generator of U(1)r respectively.
The Schur limit is defined as taking q = t. In this limit, it turns out that the p-dependence
drops out [48].

The Schur index of the Dp[SU(N)] theory is given as [16, 17]

I
Dp[SU(N)]
S = PE

[
q − qp

(1− q)(1− qp)χadj(z)
]

, (3.27)

where PE stands for the plethystic exponential PE[z] ≡ exp(∑n≥1
zn

n ) and χadj denotes the
character of the adjoint representation of SU(N). This form is particularly interesting since
it can be compared with that of an N = 1 chiral multiplet, which is given as

Ichiral(p, q; a) = PE
[
(pq)r/2a − (pq)1−r/2a−1

(1− p)(1− q)

]
, (3.28)

where r is the R-charge of a chiral multiplet in the IR and a denotes the fugacity for the
flavor (or gauge, if it is couped to a gauge field) symmetry acting on a chiral multiplet.
Notice that if we take p = qp and also r = 2

p+1 in (3.28), it becomes identical form to that
of (3.27):

Ichiral(p, q)
∣∣∣
p=qp,r= 2

p+1

= PE
[

qa − qpa−1

(1− q)(1− qp)

]
. (3.29)

Therefore, if we have a gauge theory with a chiral multiplet of R-charge 2
p+1 in the adjoint

representation of SU(N), in the limit p → qp, the (N = 1) superconformal index becomes
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identical to the Schur index (3.27) of the Dp[SU(N)] theory. This can be indeed realized by
SQCD with an adjoint X and superpotential W = TrXp+1.

The superconformal index for SQCD coupled to the Dp[SU(N)] theory (see figure 1)
can be schematically written as

I =
∫
[dz]Ivec(z)Ichi(z)IDp[SU(N)](z)

∣∣∣
t→(pq)

2
3 +ϵ

, (3.30)

where Ivec and Ichi denote the index for an N = 1 vector and chiral multiplet respectively.
IDp[SU(N)] denotes the (N = 2) index for the Dp[SU(N)] theory, and we rewrite t appropri-
ately to cast it as an N = 1 index. The mixing parameter ϵ is fixed via a-maximization
to give (3.19) once it is deformed by the lowest-dimensional Coulomb branch operator in
Dp[SU(N)]. Since we do not know the full index in general, we would like to take q = t

limit. This results in

q = (pq)
2
3 +ϵ → p = qp , (3.31)

so that the contribution to the index from the Dp[SU(N)] theory upon RG flow via N = 1
gauging and the W = u0 deformation becomes identical to that of adjoint SQCD. Thus,
the superconformal indices on both sides of the proposed duality match exactly in the
p = qp limit.12

As we can see from the form of the index, if the duality is true, we find that the
specialization of the full index for the Dp[G] theory should agree with that of the free chiral
multiplets with R-charge 2

p+1 :

IDp[G](z; p, q, t)
∣∣∣
t→(pq)

1
p+1

=
∏

α∈∆G

Γ((pq)
1

2(p+1) zα) . (3.32)

Here zα ≡
∏

i zαi
i and ∆G is the set of all roots for the G. The elliptic Gamma function is

given as

Γ(z) =
∏

n,m≥0

1− z−1pm+1qn+1

1− zpmqn
, (3.33)

which gives the index for chiral multiplet. The relation (3.32) is also consistent with the
Schur-like limit (p → qp) we considered above.

3.4 Supersymmetry enhancement for Nf = 2N and p = 2

Let us now consider the special case of p = 2 and Nf = 2N for the Argyres-Douglas dual
theory. We propose that upon further deformation by the superpotential

W = QµQ̃ , (3.34)

supersymmetry enhancement occurs at low energies. The central charges at the fixed
point are

a = 7N2 − 5
24 , c = 2N2 − 1

6 , (3.35)

12This type of (Schur-like) limit for the N = 1 theory has been considered in [49] to analyze N = 1
deformations of the minimal Argyres-Douglas theory.
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which are identical to those of N = 2 SQCD with Nf = 2N . Furthermore, the chiral
operators can be identified with those of N = 2 SQCD as follows: since the dimensions of
Q, Q̃ and µ are all 1, these give the mesonic and baryonic operators of N = 2 SQCD; the
dimensions of uj,1 and vj,1 (defined around (3.1)) are

∆(uj,1) = 3, 5, . . . , N , ∆(vj,1) = 2, 4, . . . , N − 1 , (3.36)

which are the same as those of the TrXk operators (k = 2, 3, . . . , N) of N = 2 SQCD. Note
that this mapping of operators is similar to that of N = 4 enhancement studied in [14].

Once the superpotential (3.34) is added, the IR theory lands on the interacting N = 2
fixed point (or along the conformal manifold). This is mapped to W = QXQ̃ in the adjoint
SQCD dual as we will see below, and breaks the global SU(Nf ) × SU(Nf ) symmetry to
the diagonal part. This is actually crucial since when this coupling is turned off, the gauge
coupling is also driven to zero [50].

As in the previous subsection, we can check that the superconformal index agrees with
that of N = 2 SQCD at least in the limit p = q2. This is clear, since in this case the Schur
index of the D2[SU(N)] theory is equal to the index of the adjoint chiral with R-charge 2/3.
Since we do not know the superconformal index of the D2[SU(N)] theory in full generality it
is currently not possible to check beyond this limit, except for N = 3. In the next subsection
we compute the full index for the N = 3 case explicitly, and verify that it matches.

A potential issue with our proposal is that the U(1)F symmetry in the D2[SU(N)]
theory is broken by the u0 deformation. We propose that the accidental U(1)F symmetry
emerges in the IR to form the N = 2 R-symmetry. This can be understood from the
adjoint SQCD description. Let us first consider the adjoint SQCD theory without TrXp+1

deformation. The matter content is the same as that of N = 2 SQCD with Nf = 2N flavors.
With the superpotential QXQ̃ which is dual to (3.34), the theory flows to the fixed point
with N = 2 as discussed in [50]. At this point, the TrX3 operator (which is supposed to
be mapped to u0 in the Argyres-Douglas dual theory) is marginal, but is irrelevant at low
energies since it breaks the global symmetry (namely U(1)r). Therefore the low energy
theory of adjoint SQCD has N = 2 supersymmetry.

It is straightforward to generalize this idea to quiver gauge theories. Consider the linear
quiver gauge theory depicted in figure 4 where all the gauge groups are N = 1 and SU(N).
Each gauge (or flavor) node is connected by a pair of the bi-fundamental chiral multiplets,
and is coupled to the D2[SU(N)] theory via the superpotential

W =
ℓ∑

a=1

(
u0a + (Q̃aQa − Qa+1Q̃a+1)µa

)
, (3.37)

where u0a and µa are the chiral operators from the D2[SU(N)] theories coupled to the
a-th gauge nodes; Qa and Qa+1 are the bi-fundamental chiral multiplets coupled to the
a-th gauge nodes from the left and the right respectively. As in the previous case, the
D2[SU(N)] theory plays the role of the adjoint chiral multiplet with R-charge 2/3 at low
energies. Therefore, we expect that the fixed point theory is N = 2 linear quiver gauge
theory. This can be checked at the same level as the Argyres-Douglas dual theory discussed
throughout this paper.
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D2[SU(N)] D2[SU(N)] D2[SU(N)]

N N N . . . N N

Figure 4. Linear quiver gauge theory coupled to D2[SU(N)] theories. The double line denotes a
pair of bi-fundamental chiral multiplets transforming in the (□,□) and (□,□) representations of
the left and right SU(N) symmetries.

One would be able to construct a circular quiver theory by gauging the diagonal
symmetry of the left-most and the right-most flavor nodes with an additional D2[SU(N)],
and with the superpotential W = u0 turned on. This is expected to flow to an N = 2
circular quiver gauge theory.

3.5 Case study: dualities for the WA2 SCFT with N = 3

Let us consider the proposed duality in detail for the WA2 SCFT with N = 3. The number
of the flavors is restricted to 3 < Nf ≤ 6, as per (3.24).

The dual theory is N = 1 SU(3) gauge theory coupled to D2[SU(3)] and Nf flavors.
The D2[SU(3)] theory (which is equivalent to the (A1, D4) Argyres-Douglas theory) has a
one-dimensional Coulomb branch parameterized by the Coulomb branch operator u0 of
dimension 3

2 . The associated operator (N = 2 superpartner) v0 has dimension 5
2 .

Nf = 4. Let us focus first on the Nf = 4 case. Without any superpotential, the gauge
theory flows to the fixed point with the central charges (a, c) ≃ (2.036, 2.497), where
∆T0(u0) ≃ 2.364. After the deformation by u0, the IR fixed point has the central charges

(a, c) =
(187

96 ,
277
96

)
. (3.38)

These are equivalent to those of the WA2 SCFT with N = 3 and Nf = 4.
The operator matching perfectly works in this case,

TrX2 ↔ v0 ,

Mj ↔ Qµj−1Q̃ , j = 1, 2 (3.39)
B(n1,n2) ↔ B(n1,n2) ,

with no superfluous operators to account for. The dimensions of these operators at the
fixed point are given by

∆IR(v0) = 2 , ∆IR(Qµj−1Q̃) = 1
2 + j , ∆IR(B(n1,n2)) = 9

4 + n2 . (3.40)

For this case, we can compute the full superconformal index using the N = 1 Lagrangian
flowing to D2[SU(3)] = (A1, D4) theory [21–23]. It can be computed using the integral
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expression

I =
∮
[dz]GIvec(z)Ichi(z)IDp[SU(N)](z)

∣∣∣
t→(pq)

2
3 +ϵ

=κN−1
∮ N∏

i=1

dzi

2πizi

∏
i ̸=j

1
Γ(zi/zj)

∏
i,a

Γ((pq)
r
2 z±i x±

a )IDp[SU(N)](z;p,q, t)
∣∣∣
t→(pq)

2
3 +ϵ

,
(3.41)

where the gauge indices i, j takes value in i, j = 1, . . . , N under the constraint ∏i zi = 1,
and the flavor index a run from a = 1, . . . Nf . Here Γ(z) ≡

∏
m,n≥0

1−z−1pm+1qn+1

1−zpmqn is
the elliptic Gamma function and κ ≡ (p; p)(q; q) with q-Pochhammer symbol defined as
(z; q) ≡ ∏

n≥0(1− zqn). For the contribution from the Dp[G] block, we rewrite the N = 2
fugacity to N = 1 by taking t → (pq) 2

3 +ϵ where ϵ is the R-symmetry mixing parameter given
as (3.19) and r is the R-charge for the fundamentals as is given in (3.7). Upon evaluating
the integral for N = 3, Nf = 4 (which sets r = 1/2, ϵ = −1/3) and expanding in t with
p = t3y, q = t3/y, the (reduced) superconformal index is given as

Ired ≡ (I − 1)(1− t3/y)(1− t3y)

= t3
(
1 + χ[1,0,1](x)

)
+ t4 + t

9
2
(
a3χ[0,0,1](x) + a−3χ[1,0,1](x)

)
+ t5

(
−χ 1

2
(y) + 1 + χ[1,0,1](x)

)
+ t6

(
χ[2,0,2](x) + χ[0,2,0](x) + 1

)
+ t

13
2
(
a3χ[1,1,0](x) + a−3χ[0,1,1](x)

)
+ t7

(
1 + χ[1,0,1](x)

)
+ t

15
2 (a3χ[1,0,2](x) + a−3χ[2,0,1](x)) + t8

(
−χ 1

2
(y)(1 + χ[1,0,1](x))

)
+ t8

(
χ[2,0,2](x) + χ[0,1,2](x) + χ[2,1,0](x) + χ[0,2,0](x) + 2χ[1,0,1](x) + 2

)
+ . . . ,

(3.42)

where χj(y) denotes the characters for the spin-j irrep of SU(2) subgroup of the Lorentz
group and χ[n1,n2,n3](x) denotes the character for the representation of flavor SU(4) symmetry
with Dynkin label [n1, n2, n3], and a is the fugacity for the baryonic U(1) symmetry rotating
the fundamental flavors.

We check that this is precisely equal to the superconformal index of SU(3) adjoint
SQCD with Nf = 4 deformed by TrX3. The index for adjoint SQCD with W = TrXp+1

can be written as

I =
(
κΓ((pq)

1
p+1 )

)N−1 ∮ N∏
i=1

dzi

2πizi

∏
i ̸=j

Γ((pq)
1

p+1 zi/zj)
Γ(zi/zj)

∏
i,a

Γ
(
(pq)

r
2 z±i x±

a

)
, (3.43)

and it agrees with the index of the dual theory for N = 3, Nf = 4 with p = 2, as we have
verified up to order t8.

Nf = 6: SUSY enhancement to N = 2. Let us move to the next example with
Nf = 6. Without the superpotential, the gauge theory flows to a fixed point with central
charges (a, c) ≃ (2.768, 3.274), where ∆T0(u0) ≃ 1.708. The deformation by u0 causes the
RG flow to the fixed point with the central charges

(a, c) =
(29
12 ,

17
6

)
. (3.44)
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One may verify that these coincide with the central charges of N = 2 SU(3) SQCD with
Nf = 6 flavors. We propose that at this fixed point, the supersymmetry is enhanced to
N = 2. This is quite natural from the dual adjoint SQCD description: the matter content
is simply that of N = 2 SU(3) SQCD with Nf = 6 flavors. Without the superpotential the
theory flows to the N = 2 fixed point at zero gauge coupling [50], so we turn on W = QµQ̃

in order to be at an interacting fixed point.
Again the issue is that the U(1)F symmetry in the D2[SU(3)] theory is broken by

the u0 deformation. Now, u0 ↔ TrX3 is a deformation on the Coulomb branch, but it is
marginally irrelevant since it breaks a flavor symmetry carried by X [50, 51]. Since this
deformation is marginally irrelevant, we expect the accidental U(1)F symmetry to emerge
at low energies.

The (reduced) superconformal index can be calculated from (3.41) with p = 2, N =
3, Nf = 6, for which we obtain

Ired ≡ (I − 1)(1− t3y)(1− t3/y)

= t4(2 + χ[1,0,0,0,1])− t5χ 1
2
(y) + t6

(
(a3 + a−3)χ[0,0,1,0,0] − χ[1,0,0,0,1]

)
+ t8

(
−(a3 + a−3)χ[0,0,1,0,0] + χ[2,0,0,0,2] + χ[0,1,0,1,0] + 2χ[1,0,0,0,1]

)
. . . ,

(3.45)

where a is the fugacity of the baryonic U(1) and χ[n1,n2,n3,n4,n5] denotes the character for
the flavor SU(6) symmetry.

Now the index of the N = 2 SU(N) SQCD with Nf = 2N is given as

I =
(

κΓ(pq

t
)
)N−1 ∮ N∏

i=1

dzi

2πizi

∏
i ̸=j

Γ((pq
t )zi/zj)

Γ(zi/zj)
∏
i,a

Γ
(
t1/2z±i x±

a

)
, (3.46)

with a = 1, . . . 2N . Upon evaluating the integral, we obtain

Ired ≡ (I − 1)(1− t3y)(1− t3/y)

= t4
(
v−1(1 + χ[1,0,0,0,1]) + v2

)
− t5vχ 1

2
(y)

+ t6
(
v3 − v

1
2 + v−

3
2 (a3 + a−3)χ[0,0,1,0,0] − χ[1,0,0,0,1]

)
+ t7χ 1

2
(y)(v−

1
2 − v2)

+ t8
(
−v

3
2 + v4 − v−

3
2 (χ[1,0,0,0,1] + 1) + vχ[1,0,0,0,1] + 3

)
− v−

1
2 (a3 + a−3)χ[0,0,1,0,0] + v−2(χ[2,0,0,0,2] + χ[0,1,0,1,0] + 2χ[1,0,0,0,1] + 2) + . . . ,

(3.47)

with the fugacity v corresponding to the U(1)F symmetry, which is a combination of I3 and
r (more precisely r/2− I3 or equivalently t = t4/v in (3.26)). Upon specializing to N = 3,
v = 1, we see that the indices (3.45) and (3.47) agree. As stated above, the corresponding
U(1)F symmetry cannot be seen from the UV description.

4 Conclusions and speculations for the D- and E-series

We proposed that N = 1 SU(N) gauge theory coupled to Dp[SU(N)] Argyres-Douglas
theory with Nf flavors and the certain superpotential W = u0 shares the same fixed point
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as N = 1 SU(N) adjoint SQCD with Nf flavors and WAp = TrXp+1. We checked this
duality by matching the chiral operators, central charges, and superconformal indices in a
special limit. One open problem is that from the Lagrangian (or UV) sense, we cannot see
how all of the chiral operators in the Argyres-Douglas side of the duality truncate, except
for the special values of p = 2 and N = 3. While we believe that the truncation occurs
more generally, it remains to be definitively shown.

Our dual theory before turning on the superpotential W = u0 has a geometric realization
in N = 1 class S [52–55]. Namely, we can realize the Dp[SU(N)] theory by considering
the 6d N = (2, 0) theory of type AN−1 on a sphere with one maximal regular puncture
and an irregular puncture of type IN,N−p [7]. Now, by gluing a three punctured sphere
with two maximal and one minimal regular punctures along the maximal punctures with
an N = 1 vector multiplet, we obtain a three-punctured sphere with two (one maximal,
one minimal) regular punctures and one irregular puncture (with the opposite color as the
regular punctures [48, 56]). This gives us the T0 theory with Nf = N . One can reduce
the number of flavors Nf < N by colliding two regular punctures to form an irregular
puncture [10, 57, 58]. This construction hints towards a class S description of the WAk

SCFTs. Since the holographic duals of the Dp[SU(N)] SCFTs are now known [59, 60], one
can also hope to utilize them to realize holographic duals of the WAk

SCFTs.
The WAk

SCFTs have a generalization labeled by Arnold’s ADE simple surface singu-
larities [5]. Therefore, it is natural to expect that there are generalizations of the SU(N)
gauge theory coupled to Dp[SU(N)] sectors which flow to the WD and WE fixed points.
Among them, we see hints that the E6 and E8 cases can be obtained by coupling two
kinds of Dp[SU(N)] theories, as follows. By considering D2[SU(N)] and D3[SU(N)] with N

being not divisible by 2 and 3, and gauging the diagonal SU(N) while adding a number
of fundamental flavors, we can trigger an RG flow to the WE6 = Tr(Y 3 + X4) fixed point
upon adding a superpotential corresponding to the lowest dimension Coulomb branch
operators of the D2[SU(N)] and D3[SU(N)] theories. Likewise, we can apparently obtain
WE8 = Tr(Y 3 + X5) by considering D2[SU(N)] and D4[SU(N)] building blocks. It would
be very interesting to explore these possible dualities further, especially as the WE6 and
WE8 SCFTs do not have proposed Seiberg-like magnetic duals. On the other hand, the
WDk+2 = Tr(Xk+1 + XY 2) and WE7 = Tr(Y 3 + Y X3) cases do have proposed magnetic
duals [32, 33], but it is not currently clear how to obtain them from a deformation of
Argyres-Douglas type theories. It would be interesting to find such realizations to further
strengthen the connection between Argyres-Douglas theories and the WADE fixed-point
superconformal theories, as well as to explore possible subtleties with the WDeven and WE7

dualities, as per the discussion in [34].
The adjoint SQCD fixed points provide several interesting insights on the nature of

RG flow and strongly-coupled gauge theories. As we have discussed in this paper, they
generically flow to product SCFTs with both an interacting sector and free sectors. This
decoupling will modify the values of the central charges and indices on both sides of the
dual theories. The decoupling happens only if the quantum effect is extremely strong, and
it can significantly modify the IR physics, as in the examples studied in [36, 37, 45, 61]. It
would be interesting to further investigate the RG flows in this context with this point in
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mind, and especially to perform a refined check of unitarity beyond the chiral ring using
the superconformal index [45, 62, 63].

We have also found new examples of supersymmetry enhancing RG flows between
non-Lagrangian theories and Lagrangian gauge theories. It would be interesting to better
understand such phenomenon, which may illuminate the vast landscape of non-Lagrangian
field theories.
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A SCFT conventions

A.1 N = 2

Let r and Ia=1,2,3 denote the Cartan generators of the U(1)r × SU(2)R N = 2 R-symmetry.
An N = 2 vector multiplet includes two Weyl fermions, whose charges are given as
(r, I3) = (1,±1

2) with our chosen normalization, such that the ’t Hooft anomalies are

N = 2 vector : Tr r = Tr r3 = 4Tr r (I3)2 = 2 dim(G) . (A.1)

An N = 2 hypermultiplet in a representation R includes two Weyl fermions with (r, I3) =
(−1, 0), such that its ’t Hooft anomalies are

N = 2 hyper : Tr r = Tr r3 = −2 dim(R) . (A.2)

For an SCFT preserving N = 2 supersymmetry, the anomaly coefficients are related to the
a and c central charges as [64]

Tr r3 = Tr r = 48(a − c) , Tr r(I3)2 = 2(2a − c) . (A.3)

A.2 N = 1

We can fix an N = 1 subalgebra of the N = 2 superconformal algebra, with U(1)R symmetry
generated by the combination,

R0 = 1
3r + 4

3I3 . (A.4)

With this choice, the following linear combination,

F = −r + 2I3 , (A.5)

generates a U(1)F flavor symmetry from the N = 1 point of view.

– 23 –



J
H
E
P
0
9
(
2
0
2
3
)
0
8
2

An N = 1 vector multiplet consists of one Weyl fermion with charges (r, I3) = (1, 1
2) in

our chosen basis. The anomaly coefficients of the vector multiplet are thus

Tr r = Tr r3 = Tr(2I3) = Tr(2I3)3 = Tr r(2I3)2 = Tr r2(2I3) = dim(G) . (A.6)

The a and c central charges are related to the ’t Hooft anomalies for the superconformal
U(1)R R-symmetry as [38]

a = 3
32
(
3TrR3

N=1 − TrRN=1
)

, c = 1
32
(
9TrR3

N=1 − 5TrRN=1
)

. (A.7)

When the R-symmetry can mix with U(1) flavor symmetries, the exact superconformal
R-symmetry is given by locally maximizing the expression for a in (A.7) over all possible
U(1) symmetries [39].

B Facts about the Dp[SU(N)] SCFTs

In this appendix we review some of the features of the four-dimensional N = 2 Dp[G] SCFTs.

Class S description. The Dp[G] theories have a Class S description as the reduction of
the 6d (2, 0) theory of type G = ADE on a sphere with one full (maximal) puncture F , and
one irregular puncture of type G[hG][p−hG], for hG the dual Coxeter number of G (using the
notation of [7, 11]). We henceforth restrict to the case G = AN−1 = SU(N), for which the
irregular puncture is more commonly labeled by A

[N ]
N−1[k = p − N ]. The case G = SU(2) is

also known as (A1, Dp) in the class of (G, G′) theories which can be obtained from Type IIB
string theory on a pair of hypersurface singularities [65]; this class is furthermore identified
with the SCFT obtained by tuning to the maximal singular point on the Coulomb branch
of pure SO(2p) super Yang-Mills [66], as well as the maximal conformal point of N = 2
SU(p − 1) gauge theory with 2 hypermultiplets.

Operators. As an N = 2 SCFT, the Dp[SU(N)] theories have an SU(2)R × U(1)r

symmetry. Their Coulomb branch is parameterized by Coulomb branch operators that are
neutral under SU(2)R, and whose dimensions ∆ = r/2 are given by [7–9]

∆ =
[
j − N

p
s

]
+
+ 1 , (B.1)

where [x]+ = x for x > 0 and 0 for x ≤ 0, and j = 1, 2, . . . N − 1, s = 1, 2, . . . p − 1. The
rank of the Coulomb branch is 1

2((N − 1)(p − 1)− gcd(p, N) + 1). For gcd(p, N) = 1, there
are always Coulomb branch operators which we denote by ui with dimensions

∆(ui) =
p + 1 + i

p
, i = 0, 1, . . . p − 2 , (B.2)

and other operators with higher dimensions. For instance, for p = 2 and N odd, there is one
lowest Coulomb branch operator u0 with dimension 3/2, and a tower of higher operators with
dimensions ∆ = 3/2+j for j = 1, . . . , (N −3)/2. For p = 3 and gcd(3, N) = 1, there are two
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lowest Coulomb branch operators u0 = 4/3, u1 = 5/3, and then two towers with ∆ = 4/3+j1,
j1 = 1, . . . , N/3 · (N mod 3)− 4/3, and ∆ = 5/3 + j2, j2 = 1, . . . , N/3 · (2N mod 3)− 5/3.

Each Coulomb branch multiplet — whose primary Coulomb branch operator u has
U(1)r charge r and dimension ∆(u) = r/2 — contains a level-two descendant scalar operator
v with U(1)r charge r − 2, SU(2)R charge I3 = 1, and dimension ∆(v) = r/2 + 1. We will
denote these descendants of the ui defined above in (B.2) as vi.

The flavor symmetry of the SCFT is at least SU(N), with gcd(p, N)− 1 extra U(1)’s
for gcd(p, N) ̸= 1. We will focus on the case with gcd(p, N) = 1. Associated with the
flavor symmetry, there exists a conserved current multiplet whose lowest component is the
moment map operator µ with r = 0 and I3 = 1, and ∆(µ) = 2. It was argued in [40] that
this operator satisfies the following chiral ring relations,

Trµk = 0 , µp
∣∣
adj = 0 , (B.3)

for any k, where . . . |adj denotes the adjoint part of . . ..

SCFT data. The SU(N) flavor central charge is given by

kSU(N) =
2(p − 1)

p
N , (B.4)

defined by −2Tr rT aT b = kSU(N)δ
ab, where T a are the generators of the SU(N) global

symmetry. The a and c central charges of the Dp[SU(N)] theory for coprime p, N are
given by

a = (4p − 1)(p − 1)
48p

(N2 − 1) , c = p − 1
12 (N2 − 1) . (B.5)

The non-zero ’t Hooft anomaly coefficients for the R-symmetry are

Tr r = Tr r3 = (1− p)(N2 − 1)
p

, Tr rI2
3 = (1− p)(1− 2p)(N2 − 1)

12p
. (B.6)
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any medium, provided the original author(s) and source are credited.
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