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1 Introduction

Although the LHC has been performing great including the discovery of the Higgs bo-
son [1, 2], it continuously shows no evidence for the new physics, or beyond the Standard
Model (BSM), only confirming the Standard Model (SM) to a better precision. It indicates
that either new particles, if they exist, are very weakly coupled to the SM or they may be
hidden in the energy scale beyond the LHC reach, especially, if a new physics has a sizeable
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coupling to the SM. Given the strong indication for the mass gap between the electroweak
and new physics scales, the effective field theory approach makes sense to parametrize the
possible new physics effects encoded in the higher-dimensional operators. Deviating from
the SM with the Higgs doublet under the SM gauge symmetry, the effective Lagrangian,
known as the SM Effective Field Theory (SMEFT), below the cutoff Λ is written as

L = LSM +
∑
i

c
(6)
i

Λ2 O
(6)
i +

∑
i

c
(8)
i

Λ4 O
(8)
i + · · · , (1.1)

where the lepton number conservation was assumed and c(d)
i is the Wilson coefficient for the

dimension-d operator O(d)
i . The non-vanishing effect from the new physics on the Wilson

coefficients of higher-dimensional operators will cause a deviation of couplings among SM
particles from the SM prediction.

In this work, we focus on the precision measurements of the cubic interaction of the
gauge bosons at the LHC. Taking into account the property of the SMEFT up to dimension-
6 operators, the deviation of the triple gauge couplings from the SM can be parametrized
in terms of three anomalous Triple Gauge Couplings (aTGC) as

Ltgc = ie
(
W+
µνW

−
µ −W−µνW+

µ

)
Aν + ie

cθ
sθ

(1 + δg1,z)
(
W+
µνW

−
µ −W−µνW+

µ

)
Zν

+ ie(1 + δκγ)AµνW+
µ W

−
ν + ie

cθ
sθ

(1 + δκz)ZµνW+
µ W

−
ν

+ i
λze

m2
W

[
W+
µνW

−
νρAρµ + cθ

sθ
W+
µνW

−
νρZρµ

]
,

(1.2)

where cθ =
√

1− s2
θ and δκz = δg1,z −

s2
θ

c2
θ
δκγ . Considering only amplitudes with a single

insertion of aTGC, the cross section is in general a quadratic function of aTGC and it can
be parametrized as

σ = σSM + Ciσ
i
SM×BSM + CiCjσ

ij
BSM×BSM , (1.3)

where the index i runs over three aTGCs, Ci ≡ {λz, δg1,z, δκz}.
Typically, measurements of aTGC at the LHC have been performed by using diboson

processes such as WW , WZ, and Wγ in the lepton-enriched final state channels [3–5].
Unlike the precision measurement in LEP from WW production process with the fixed
center of mass energy around the electroweak scale, the sensitivity on aTGC from the LHC
relies on the accessibility to the higher energy as long as it does not violate the validity
of the EFT [6], or one should not use the data at the energy E above the cutoff Λ, or
E/Λ . 1. While the leptonic channel is clean and thus provides good sensitivity, the
accompanying neutrinos can make it difficult to experimentally extract the exact scale of
the hard process, especially in the dileptonic WW process. The neutrino reconstruction is
rather straightforward in the fully leptonic WZ and Wγ processes [5] . When one can not
impose an appropriate cut on the scale of the hard process to ensure E/Λ . 1, one can
only set a conservative bound in this situation [7, 8].

An interesting aspect in the diboson process, especially in their transverse modes, has
been the noninterference between the SM and BSM amplitudes which was found to be
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dictated by the helicity structure of the amplitudes [9, 10]. Including only dimension-6
operators, in the absence of interference, the leading BSM contribution to the total cross
section scales O(Λ−4), and it may invalidate the EFT expansion in terms of Λ. This also
makes the translation of the data to the SMEFT sensitive to the dimension-8 operators
as the leading contribution is in the same order of the interference between dimension-8
operators and the SM. There have been many attempts to resurrect the interference in
the diboson process. While 2 → 2 diboson processes are subject to the noninterference,
unstable vector gauge bosons must decay. Once the 2→ 2 diboson amplitude is extended
to 2→ 3, 4 by gluing with the three point amplitude(s) for a gauge boson decay into two
fermions, the total helicity of both amplitudes of the dimension-6 and the SM can match
and thus interfere. The authors in [8, 11, 12] suggested to look into differential angular
distributions in the leptonic decay channels to resurrect the interference. See [13, 14]
for a related discussion. The authors in [8, 12] pointed out the partial resurrection of the
interference due to the QCD next-to-leading order (NLO) effect. The role of off-shellness of
the vector gauge bosons in the diboson process on the interference has been studied in [15].

In this work, we newly add the dilepton production process with two associated forward
jets in the vector boson fusion (VBF) to the list regarding the interference resurrection.
This process at

√
s = 13TeV, using the integrated luminosity of 35.9 fb−1, has been ana-

lyzed by the CMS collaboration [16] (see [17] for the ATLAS study). Although the signal
rate of the VBF process is smaller than the diboson production from the QCD process, it
may not be practically irrelevant compared to the diboson process. Besides, it has its own
theoretical interest: the interference between the amplitudes with dimension-6 operators
and those from the SM is resurrected in the inclusive cross section of the 2 → 4 process,
and it reveals a nontrivial phase space of the process. While the electroweak (EW) `` +
jets process which is our main interest in this work may be considered as the EW Drell-
Yan process, we aim to measure aTGCs via the tree-level process whereas QCD Drell-Yan
process can access them via one loop effect [18]. One can see [19–24] (and [25, 26] for the
experiment) for the precision study at the high energy tail of the QCD `` process focusing
on the tree-level four-fermion interactions.

A confusion arises due to the usual effective W approximation (EWA) [27–40] which
factorizes the gauge boson radiated off the quark line and the WW initiated subprocess.
If this is the case, the interference will be suppressed again as total helicities of the SM
and BSM amplitudes of WW → `` do not match in the massless limit [10]. For better
understanding, an analytic study of the process that takes the full effect of the forward
quark current would be highly beneficial. To this end, we carry out the full analytic
calculation for a simpler process uγ → dνe+ that has only one forward quark current and
one intermediate gauge boson as a toy process. As will be discussed below in detail, we
find that the interference cross section of uγ → dνe+ with respect to the SM counterpart
does resurrect the energy growing behavior, interestingly, in the inclusive cross section, that
would have been lost in the typical EWA limit. The resurrected energy growing interference
in the inclusive cross section appears in the full uγ → dνe+ process when enlarging the
phase space to cover beyond the relevant regime for the EWA, and thus provides a counter-
example to the usual EWA assumption (see [40] for a related discussion). Our simpler
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Figure 1. Interference between BSM and SM diagrams in the massless limit where only two types
of SM diagrams are shown. The blob denotes the insertion of the dimension-6 operator tr(W 3

µν).
The helicity assignment is displayed as an example.

toy process provides the proof of concept example for the resurrected interference in the
inclusive cross section, and the intuition from it greatly helps for a better qualitative
understanding of our EW `` production process with two associated jets.

It turns out to be crucial that an enough energy must flow into the `` hard subprocess
to resurrect the energy growing interference in the inclusive cross section of the full 2→ 4
process. Unlike the QCD Drell-Yan process where m`` directly controls the fraction of the
energy that goes into the dilepton system, it becomes ambiguous in our EW `` with two for-
ward jets process because some fraction of energy goes to the scattered quarks. In this work,
we propose a new variable, what we call VBFhardness, that allows to control the fraction of
energy carried by the `` subsystem. We demonstrate that the energy growing interference
with respect to the SM is clearly resurrected with an appropriate cut on VBFhardness.

In section 2 we briefly sketch the (non)interference of the dilepton production with two
associated jets. In section 3 we provide the analytic result of a simpler 2→ 3 (instead of our
2→ 4) toy process as this simpler example can be analytically calculated to capture the full
effect of the forward jet from the viewpoint of the interference resurrection and the validity
of the EWA. In section 4 we perform the numerical simulation of the EW `` production with
two associated jets as our main process of interest. In particular, we validate our simulation
against the CMS cut-and-count analysis. We carry out the multivariate analysis using the
Boosted Desicion Tree (BDT). We finally derive the sensitivity of aTGC at the LHC and
high luminosity LHC (HL-LHC). Our results are compared to the existing limits from
various diboson processes.

2 EW dilepton production with two associated jets

Figure 1 illustrates the subset of diagrams for the 2→ 4 amplitudes, leading to the dilepton
with two associated jets, and possible helicity assignments which allow the interference
between SM and BSM amplitudes. There is no similar diagram to the first one in figure 1
with the SM triple gauge couplings of the transverse modes as the helicity can not be
correctly assigned. Its non-vanishing diagram can arise via helicity flips along with the
Higgs VEV insertions and it will be suppressed by O(m2

W /E
2).

The virtuality ofW emitted off the initial quark current induces the energy uncertainty
ofW whose inverse sets the time uncertainty ∆t ∼ E/V 2 where V is the virtuality ofW and
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Figure 2. Noninterference between BSM and SM amlitudes for WW → ``. The blob denotes the
insertion of the tr(W 3

µν) operator. The helicity assignment displayed is an example.

E is the scale of the hard process. As long as ∆t is much longer than the typical interaction
time t ∼ 1/E, one can not distinguish the virtual W from on-shell one. In this situation,
one can typically compute the partonic cross section of the hard subprocess whose leading
contribution is approximated by those, effectively treating W as on-shell gauge boson, and
convolutes it with the probability distribution function of the W gauge boson [40]. This
factorization is known as the effective W approximation (EWA). Apparently, the SM am-
plitudes of the WW → `` process in figure 2 do not interfere with the BSM amplitudes
in the massless limit, known as noninterference [10]. From the viewpoint of the afore-
mentioned 2 → 4 amplitudes, the amplitudes from the SM and BSM do interfere as total
helicity allows. However, it can be shown rigorously that the interference vanishes upon the
integration over the phase space if the relevant regime for the EWA is the dominant one.

The middle diagram in figure 2 can interfere with the BSM amplitude via helicity flips
in the sub-leading order. It is consistent with that it can extend to the 2 → 4 amplitude
by attaching two quark currents upon helicity flips. On contrary, the extended amplitude
with two attached quark currents of the third diagram in figure 2 can interfere with the
corresponding BSM amplitude without any suppression as is evident in figure 1.1 In this
work, we newly point out that the EW `` process in VBF reveals a new sizable phase space
which, otherwise, gets lost in the typical EWA limit, and thus interference can survive in
the total cross section.

3 Toy process for analytic study: single lepton with an associated jet

The purpose of this section is to analytically investigate (and numerically confirm) the
helicity structure and related kinematics of simpler 2→ 3 process uγ → dνe+ (see figure 3
and figure 4) that captures the full effect of the quark current attached to a vector gauge
boson. While the analytic calculation of the full 2 → 4 process in section 2 is beyond the
scope of this work, our analytically calculable 2 → 3 toy process2 provides the proof of

1In the 2 → 4 diboson process decaying into two pairs of fermions, the narrow width approximation
allows to factorize the phase space of decaying on-shell gauge bosons from that of the hard process, and
the process is subject to the noninterference. In this situation, the interference can appear, for instance, in
the differential cross section of the azimuthal angle [8, 11].

2A similar explicit computation may be applicable to the 2 → 3 process of qq′ → γW ∗ → γ`ν` where
the effect of the off-shell W gauge boson on the interference, for instance, whether the interference between
SM and BSM amplitudes can be resurrected in the inclusive cross section, can be explicitly understood.
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Figure 3. The interference (noninterfernce) in the 2 → 3 process (2 → 2 subprocess). The blob
denotes the single insertion of the tr(W 3

µν) operator. The complete set of diagrams are shown in
figure 4.

concept for the resurrected interference and an intuition on the validity of the EWA in the
SMEFT. We expect this simpler toy process to capture important missing properties when
simply approximating with 2→ 2 VBF process under the EWA assumption. We consider
uγ → dνe+ since it involves with the exchange of only the W gauge boson. A similar
discussion is applied to qV → q′`` although the evaluation is more challenging.

The helicity assignments of two diagrams in figure 3 indicate that the interference be-
tween the SM and BSM amplitudes in the 2 → 3 process can be allowed. We separately
consider the kinematic regions for the on-shell and off-shell intermediate W gauge bosons
decaying to `ν` since they have different qualitative behaviors. For the resonant on-shell
W gauge boson, the 2 → 3 process is factorized into the production of the on-shell W
gauge boson and its decay. It is expected that the inclusive cross section is subject to the
noninterference and the interference at best can be resurrected only in the differential cross
section of an angular observable (although it is difficult to be reconstructed in the experi-
ment). On contrary, for the non-resonant 2→ 3 process, the aforementioned factorization
is not possible and the interference in principle can appear in the inclusive cross section.

The full set of SM diagrams of the EW uγ → dνe+ process are shown in figure 4. We
classify the first two diagrams a and b as the process of interest that probe the hard 2→ 2
subprocess and the last two diagrams c and d as the radiation type. All four diagrams in
figure 4 are required to satisfy the Ward identity, namely p2 · (Ma +Mb +Mc +Md) = 0.
For the resonant intermediate W , the Ward identity can be shown to be satisfied among
three diagrams, p2 · (Ma +Mc +Md) = 0, using the narrow width approximation. We
postpone all the details for the analytic calculation of uγ → dνe+ to appendix B. In what
follows, we quote only the final result.

3.1 Cross section for on-shell W boson

The diagrams a, c, and d in figure 4 mainly contribute to the resonant 2→ 3 process where
we can restrict the phase space to those in the W mass window, or k2 = (2z − 1)ŝ ≈ m2

W

where z = [1/2, 1] is the fraction of the total energy
√
ŝ flowing into the νee+ system and

k is the four-momentum of it. The process can be factorized into the 2 → 2 process of
uγ → dW and the decay of W to νee

+ using the narrow width approximation for the
on-shell W boson of the width ΓW .
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Figure 4. The complete set of SM diagrams for the process uγ → dνe+. These four diagrams are
required to guarantee the Ward identity and to get the correct high energy behavior.

We evaluate the partonic differential cross section with respect to φ in the limit of
ŝ � m2

W where φ is the angle between the planes made out of the forward quark current
and the lepton current (see figure 17). The SM contribution is rather subtle to evaluate
due to the forward singularity in the massless fermion limit. Its size is roughly given by

dσ̂SM
dφ

=
∫ cos θmax

cos θmin
d cos θ d2σ̂SM

dφd cos θ ≈
1

2 · 2
1

512π2
8πe2g4

3
mW

ΓW
1
ŝ

1
δ
, (3.1)

where δ = 2p2
T min/ŝ assuming δ � 1 and it comes from the integration regularized by the

pT cut of the forward quark,

cos θmax/min = ±
√

1− p2
T min

ŝ(1− z)2 ≈ ±
(

1− 2 p2
T min
ŝ

)
for ŝ� m2

W , p
2
T min . (3.2)

On the other hand, the leading contribution to the partonic differential cross section for
the interference in the high energy limit, ŝ� m2

W , is estimated to be

dσ̂SM×BSM
dφ

= 1
2 · 2

λz
512π4

πe2g4

3
2

mWΓW

[
cos(2φ)

(
2− log ŝ

m2
W

)]
+O(ŝ−1/2) . (3.3)

Upon the integration over the angle φ, the interference term vanishes while it is recovered
in the differential cross section with respect to φ. The individual contributions to the total
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cross section for the interference are given by

dσ̂SM×BSM(uLγL → dνe+)
dφ

= λz
512π4

πe2g4

144
1

mWΓW

×
[
9π2 cosφ+ 16 cos(2φ)

(
5− 3 log ŝ

m2
W

)]
+O(ŝ−1/2) ,

dσ̂SM×BSM(uLγR → dνe+)
dφ

= λz
512π4

πe2g4

144
1

mWΓW

×
[
− 9π2 cosφ+ 16 cos(2φ)

(
7− 3 log ŝ

m2
W

)]
+O(ŝ−1/2) ,

(3.4)

where linear terms in cosφ cancels upon the summation and there is no contribution from
the right-handed quark in the massless limit. In the same high energy limit, the quadratic
term in the anomalous coupling λz is approximately estimated to be

dσ̂BSM2

dφ
= 1

2 · 2
λ2
z

512π4
πe2g4

6
ŝ

m3
WΓW

(
1 +O(ŝ−1/2)

)
, (3.5)

where φ dependent terms are subdominant. For the quadratic terms in aTGC couplings,
the leading contributions from both photon polarizations are the same.

The energy flowing into the on-shell W is z
√
ŝ ∼

√
ŝ/2 as usual in the high ŝ limit

because of z ∼ 1/2 +m2
W /(2ŝ)→ 1/2 for ŝ� m2

W . The produced on-shell W gets boosted
with the transverse momentum of the order O(

√
ŝ). The boosted W boson requires a large

recoiling against a hard quark jet which likely invalidates the EWA as the jet can not be
treated as a forward jet anymore. The process is subject to the noninterference, as is seen in
eq. (3.3), since it is basically 2→ 2 process uγ → dW where theW decay can be factorized.
In this situation, the interference can be accessed through the differential distribution of φ
of the quark jet. A large number of signal events in the on-shell mass window may help.

When generalizing our toy process to the 2→ 4 process with the intermediate resonant
W by attaching the fermion line to the photon, the situation becomes less obvious. Similarly
the EWA of either jet or both will not be valid if the boosted W boson is considered. The
interference will be similarly resurrected via the differential cross section of an appropriate
angular variable out of two quark jets [17].

3.2 Cross section for off-shell W boson

Alternatively, one can probe the high energy behavior of the anomalous coupling by directly
accessing far off-shell region of W , or k2 = (2z − 1)ŝ� m2

W . For this case, the full matrix
element for the 2 → 3 process needs to be considered. One new feature will be the
resurrection of the interference in the inclusive cross section, and its size is expected to
be proportional to the off-shellness of the W boson. While the analytic evaluation of the
differential cross section in terms of φ is challenging due to the diagram b in figure 4, we
have managed to get the leading contribution only for the left-handed polarization of the
photon in the high energy limit. Similarly to the previous section 3.1, we will use ŝ to take
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a high energy limit. The cross section for the interference in the limit of ŝ� m2
W far away

from the W mass window, k2 � m2
W , is estimated to be

dσ̂SM×BSM(uLγL → dνe+)
dφ

= λz
512π4

e2g4

m2
W

[
− 2

9 −
π2

6 cosφ (3.6)

+ 1
18

(
π2 − 26 + 22 ln ŝ

m2
W

− 6 ln2 ŝ

m2
W

)
cos(2φ)

] (
1 +O(ŝ−1)

)
,

where ΓW dependent terms are not shown as they contribute to the region of the W mass
window. Although the off-shell contribution is suppressed by the factor of O(ΓW /mW ), or
∼ O(1/m2

W ), compared to the cross section from theW mass window, the interference term
can survive in the inclusive cross section even after the integration over all angular variables
(see the first term in eq. (3.6)). The cross section for the quadratic term in λz is given by

dσ̂BSM2(uLγL → dνe+)
dφ

= λ2
z e

2g4

512π4
ŝ

m4
W

[
1
24

(
−9 + 4 ln ŝ

m2
W

)

− π2

48 cosφ− 1
12 cos(2φ)

] (
1 +O(ŝ−1/2)

)
,

(3.7)

where φ dependence only appears in cosφ and cos(2φ) terms. For the quadratic term, the
analytic expression in the high energy limit outside the W mass window can be obtained
for both polarizations of the photon, and the summed and averaged cross section over
helicities is given by

dσ̂BSM2

dφ
= 1

2 · 2
λ2
z e

2g4

512π4
ŝ

m4
W

[
1

216

(
−143 + 60 ln ŝ

m2
W

)

+ π2

240 cosφ− 1
12 cos(2φ)

] (
1 +O(ŝ−1/2)

)
.

(3.8)

While we have shown the evidence of the resurrected interference in the inclusive cross
section through the computation of the differential cross section in terms of φ only for the
left-handed photon helicity, it may be more convenient to access directly to the inclusive
cross section summed and averaged over helicities. For the direct analytic computation of
the inclusive cross section, we have managed to get the final result for both helicities of the
photon by performing the integration over φ first and the remaining variables later. The
leading contribution of the summed and averaged cross section over helicities is given by

σ̂SM×BSM = 1
2 · 2

λz
512π4

e2g4

m2
W

× π

3

(
13− 6 ln ŝ

m2
W

)
+ · · · , (3.9)

where · · · denotes the higher order in ŝ and the logarithmic term is due to the contribution
from the right-handed helicity of the photon. The summed and averaged cross section
which is quadratic in λz can be easily obtained by integrating eq. (3.8) over the angle φ.
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For more off-shellW , more energy flows into the eν system. We can isolate the behavior
of the corresponding phase space by integrating over only the interval z = [1 − ε, 1] with
ε� 1,

σ̂SM×BSM
512π4

λz

m2
W

2πe2g4 (3.10)

= −1
3ε

2 + 1
3
m2
W

ŝ

[(
−3 + 2 ln 2εŝ

m2
W

)
ε+

(
−13 + 6 ln 2εŝ

m2
W

)
ε2 + · · ·

]
+ · · · ,

where · · · denotes the higher order terms in ε and m2
W /ŝ. In the high energy limit of

ŝ→∞, the first constant term will eventually dominate, and it will appear as the energy
growing interference in σ̂SM×BSM/σ̂SM assuming σ̂SM ∼ 1/ŝ. The variable meν may be
considered to be more relevant one to take a high energy limit of the hard subprocess
Wγ → νe+ inside uγ → dνe+. Simply changing variable from

√
ŝ to meν in expressions

obtained in the high ŝ limit in eqs. (3.6), (3.7) and (3.8) could be misleading or not well
defined, for instance, a wide range of

√
ŝ can be associated with a small value of meν for

z ∼ 1/2 (see the right panel of figure 5). The analytic computation of the interference in
terms of meν , performed at this time starting from amplitudes, reveals a similar energy
growing behavior to eq. (3.10).

3.3 Numerical calculation of toy process and interference resurrection

We numerically investigate the analytic behavior discussed in sections 3.1 and 3.2. To
this end, we generate partonic level events for the EW uγ → dνe+ process using Mad-
Graph5_aMC@NLO v2.6.7 [41] only with the nominal pT cuts of 10GeV for the final
quark, neutrino, and electron. As the noninterference is well established for the operator
involving λz, the events for the interference are generated only for λz coupling. While
the separation of the off-shell region from the on-shell one in section 3.2 was done just by
dropping out all ΓW dependent terms by hand, we numerically control the separation using
two variables ∆mW = meν −mW and z for the purpose of the demonstration.

The fraction of the energy, z∗ = 1/2 +m2
W /(2ŝ), carried by the on-shell νee+ system is

roughly order one for ŝ ∼ m2
W , and it rapidly drops to 1/2 with increasing

√
ŝ as is seen in

the left panel of figure 5. Due to the relation meν =
√

(2z − 1)ŝ, two variables meν and
√
ŝ

are comparable to each other only for a low
√
ŝ where 2z− 1 is roughly order one and they

can be very different for a large
√
ŝ as 2z − 1 can be almost zero. The region bounded by

red lines in the left panel of figure 5 corresponds to the z value for the W mass window of
10GeV, or |m`ν(=

√
(2z − 1)ŝ)−mW | < 10GeV. To access the off-shell region, we impose

the cut on z such as |z − z∗| = |(m2
eν −m2

W )/(2ŝ)| > 0.05 and z > 0.9 and they are shown
by gray lines in figure 5. The selected region by z > 0.9 isolates the phase space where
most of the center of mass energy

√
ŝ flows into the νee+ system and meν can be as large

as
√
ŝ as is seen in the right panel of figure 5. It is also the phase space where the condition

for the typical EWA is expected to be satisfied. While the cut of z − z∗ > 0.05 makes it
possible to access a deeper off-shell region in a large

√
ŝ region than that specified by the

W mass window of 10GeV (red lines in figure 5), most events are still populated near the
lower meν value than

√
ŝ.
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Figure 5. Left: the fraction of the energy that flows into the eν system, z = Eeν/
√
ŝ, as a function

of
√
ŝ. The band bounded by red lines correspond to the W mass window of 10GeV. Black line

denotes the z value for the on-shell W of the mass mW . Right: the correlation between meν and√
ŝ depending on the cut on z.
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Figure 6. The differential distribution of |σSM×BSM |/σSM in
√
ŝ for the EW uγ → dνee

+ at
the parton level. Black lines demonstrate the interference at off-shell region specified as |z − z∗| >
0.05 and meν > 90GeV. Red lines demonstrate the noninterference for the on-shell W defined by
|z − z∗| < 0.05 and |meν −mW | < 10GeV.

Our numerical simulations of |σSM×BSM |/σSM binned in
√
ŝ is illustrated in figure 6.3

As is evident by the red-colored almost flat distribution in figure 6, the noninterference
predicted for the on-shell W in section 3.1 is numerically confirmed. The black-colored
distribution in figure 6 demonstrates the resurrected energy growing interference in the
inclusive cross section for the off-shellW and they agree with our expectation in section 3.2.

The left panel of figure 7 illustrates the interference cross section with respect to the SM
in terms of the meν variable for the same phase space as those in figure 6, and the energy-
growing behavior is clearly seen. In the right panel of figure 7, we take a limit where almost
all energy

√
ŝ flows into the eν system (see the solid gray line in the left panel of figure 5).

3In this work, we will not explore the sign of the interference and its sensitivity at the collider. The sign
of the interference depends on the phase space (see appendix B.3 for the related discussion).
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Figure 7. The differential distribution of |σSM×BSM |/σSM in meν for the EW uγ → dνee
+ at the

parton level. Events are restricted to satisfy |z− z∗| > 0.05 and meν > 90GeV (left) or z > 0.9 and
meν > 90GeV (right).

As is clearly seen in the right panel of figure 7, the energy growing interference term looks
survive in this limit of the full 2 → 3 process. However, this energy growing interference
term allowed by the helicity selection rule of the full 2 → 3 process will get lost if one
simply assumes the EWA and works on the 2→ 2 hard subprocess. Recall that the helicity
selection rule of the 2→ 2 subprocess does not allow the interference in the massless limit.

While we have exploited the variable z to distinguish the phase spaces of the on-shell
and off-shell regions, it can be traded for a combination of experimental variables. Using the
transverse momentum of the forward quark, pT (q) = (1−z)

√
ŝ sin θ (with sin θ = 1/ cosh η),

and meν =
√

2z − 1ŝ, one can easily derive the relation,

pT (q) cosh η
meν

= 1− z√
2z − 1

≤ 1− zmin√
2zmin − 1

≡ δmin → pT (q) ≤ δmin
meν

cosh η , (3.11)

where zmin = {z∗+0.05, 1−ε} was used in the plots in figure 7 and η is the pseudorapidity of
the outgoing quark. Note that z∗ (thus δmin as well) is still a function of the experimentally
inaccessible ŝ although its dependence gets mild in the high ŝ limit. For the hard cut on
z, δmin becomes a constant. We have numerically checked that the cut pT (q) < 0.112 ×
(meν/ cosh η) is physically equivalent to z > 1− ε (with ε = 0.1) and reproduces the same
plot as the right panel of figure 7.

3.4 Beyond the effective W approximation

We provide a brief qualitative comparison with the derivation of the effective W approx-
imation in literature to understand better what really happens regarding the interference
resurrection. This reveals a nontrivial nature of the interference resurrected in the inclusive
cross section that was demonstrated above. The full detail of the comparison is given in
appendix C. Here, we quote only the final essence. Motivated by the discussion in [40], the
total amplitude of uγ → dνe+ from the SM and BSM is decomposed into Fourier modes
in φ, or ε ·M =

∑
nCn e

inφ where the coefficient Cn can be easily obtained by the residue
theorem. In the forward quark limit, θ = π−ε with ε� 1 (with the abuse of the notation),
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the full amplitude can be expanded in powers of ε̃ = εe−iφ and its complex conjugate ε̃∗

and so on,
ε · M = ε̃

(
M(0,0)

+ +M(1,0)
+ ε̃+M(0,1)

+ ε̃∗ + · · ·
)

+ ε̃∗
(
M(0,0)
− +M(1,0)

− ε̃+M(0,1)
− ε̃∗ + · · ·

)
+ · · · ,

(3.12)

where ε is the polarization of the photon and allM(i,j) have the same energy dependence.
Two groups of terms, denoted by ±, being proportional to the overall ε̃ and ε̃∗ in eq. (3.12)
are associated with the contributions from two transverse polarizations. The contributions
associated with the longitudinal polarization and those suppressed by m2

W
E2 are denoted by

· · · in eq. (3.12). Since pT (q) = p⊥ ∼ (1−z)
√
ŝ sin ε and m2

eν = (2z−1)ŝ in our toy process,
taking meν ∼ E for z ∼ O(1) as an energy of the hard subprocess, we have the relation
p⊥ ∼ E ε from which we can relate ε̃ with p̃⊥ ≡ p⊥e

−iφ introduced in [40]. Therefore,
the expansion of our full amplitude in powers of ε̃ and its complex conjugate should be
equivalent to the expansion in powers of p̃⊥E and its complex conjugate as was done in [40],

ε · M = p̃⊥
E

(
M(0,0)

+ +M(1,0)
+

p̃⊥
E

+M(0,1)
+

p̃∗⊥
E

+ · · ·
)

+ p̃∗⊥
E

(
M(0,0)
− +M(1,0)

−
p̃⊥
E

+M(0,1)
−

p̃∗⊥
E

+ · · ·
)

+ · · · .
(3.13)

From our explicit expressions of the full amplitude with only the coupling λz for the left-
handed photon polarization as an illustration, given in appendix C, we find that

M(0,0)
−,SM 6= 0 M(0,0)

−,BSM = 0 , M(0,0)
+,SM = 0 M(0,0)

+,BSM 6= 0 , (3.14)

which is consistent with the helicity selection rule, namely noninterference in the subpro-
cess. The leading contribution to the interference that can survive in the total cross section
comes from, when squaring the full amplitude,

∝ (ε̃ε̃∗)2
(
M(1,0)∗
−,SMM

(0,1)
+,BSM + h.c.

)
+ · · · , (3.15)

whereas the leading SM and quadratic terms of the BSM are given by

∝ (ε̃ε̃∗)
∣∣∣M(0,0)
−,SM

∣∣∣2 + (ε̃ε̃∗)
∣∣∣M(0,0)

+,BSM

∣∣∣2 + · · · , (3.16)

where only leading terms that should survive in the inclusive cross section (φ-independent
terms) are shown. Therefore, the leading contributions to the interference and quadratic
terms in the inclusive cross section with respect to the SM cross section scale as, keeping
only leading φ-independent contributions,

|ε · M|2SM×BSM
|ε · M|2SM

∝ λzε2E
2

Λ2 ,
|ε · M|2BSM2

|ε · M|2SM
∝ λ2

z

E4

Λ4 , (3.17)

where only the interference with respect to the SM appears suppressed by ε2 compared
to the typical energy-growing behaviors. Note that there could be also terms suppressed
by m2

W
E2 in the interference in eq. (3.17). Although our demonstration was done assuming
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the limit ε � 1, our exact result (for instance, eq. (C.4)) extends to the situation with a
sizeable ε which can be thought of kind of the resummation, and this phase space is not
caught in the EWA limit. If only leading termsM(0,0)

± were taken (as was in the derivation
of the EWA in [40]), the interference between the SM and BSM would have been lost upon
the integration over φ and the situation falls into the usual expectation from the typical
EWA. In this work, however, we newly point out that the sizable interference terms to the
total cross section can come from higher-order terms beyond the regime for the EWA. We
suspect that our situation should belong to an exceptional case, the helicity selection rules,
briefly mentioned in [40], as a case where their derivation may become invalid.

4 Numerical analysis of EW dilepton with two associated jets

In this section we numerically investigate the EW `` + two jets process at the LHC. We
take the CMS analysis in [16] as our baseline for both the validation of our analysis and
the derivation of the sensitivity on aTGCs at the LHC.4 The detail of the event generation
can be found in appendix A.

4.1 Interference resurrection

We can use the intuition from the EW uγ → dνe+ process in section 3 to isolate the
phase space that reveals the interference resurrection in the EW ``+ two jets process. In
the partonic EW `` + qq′ process, we can treat the `` (qq′) system effectively as a single
particle with the energy of z

√
ŝ ((1−z)

√
ŝ) and the invariant mass of m`` (mqq′). Similarly

to our toy process in section 3, the variable z represents the fraction of the total energy
flowing into the dilepton system. Three momentum conservation, ~pT (``) = −~pT (qq′), in
the center of mass frame of two initial quarks leads to m2

`` − m2
qq′ = (2z − 1)ŝ where z

varies over the range z = [m``/
√
ŝ, 1 − mqq′/

√
ŝ ]. Similarly to the previous section, we

start with the variable z = 1/2 + (m2
`` −m2

qq′)/(2ŝ) to separate the off-shell phase space
from the on-shell one where z∗ = 1/2+(m2

Z−m2
qq′)/(2ŝ) at the Z pole. An appropriate cut

on z such as |z − z∗| = |(m2
`` −m2

Z)/(2ŝ)| > ∆z or z > zmin will select the corresponding
off-shell region, while ensuring a certain correlation between m`` and

√
ŝ. Combining

m2
``−m2

qq′ = (2z−1)ŝ with the transverse momentum of the effective qq′ system pT (qq′) =√
(1− z)2ŝ−m2

qq′ sin θqq′ , the variable z can be translated into the nontrivial combination
of various kinematic variables via the relation,

VBFhardness ≡
m2
`` −m2

qq′

p2
T (qq′) cosh2 ηqq′ +m2

qq′
= 2z − 1

(1− z)2 ≥
2zmin − 1

(1− zmin)2 for z ≥ zmin ,

(4.1)
where the ratio is the monotonically increasing function, while it can have either sign, and
sin θqq′ = 1/ cosh ηqq′ was used to express in terms of the pseudorapidity of the qq′ system.
The positive value of the VBFhardness (or equivalently z > 1/2) corresponds to the case
where more than half the total energy flows into the dilepton system. Just like the case of

4Similar study by the CMS collaboration for the EW `ν` + two jets process has been made in [42].
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Figure 8. The distributions of |σSM×BSM |/σSM in m`` for the partonic EW ``+ qq′ (black lines
in both panels) for the λz coupling (other couplings are set to zero). Similarly for |σBSM2 |/σSM
(red lines). Events for solid lines are restricted to those with VBFhardness > 5 in eq. (4.1) along
with pT (q) > 25GeV, pT (`) > 10GeV, and mqq′ > 120GeV. For dashed lines in the right panel,
the VBFhardness cut is removed while others kept the same.

our toy process in section 3, zmin still has the ŝ dependence if one intends to impose a cut
on |z − z∗| instead of a constant cut on z itself.

As is evident in the right panel of figure 8 (see black dashed lines), the interference
does not reveal the energy growing behavior without a cut on the ratio in eq. (4.1). As an
illustration, the resurrected interference in the inclusive cross section for the λz coupling
is clearly shown in the left panel of figure 8 for VBFhardness > 5 that corresponds to
z ≥ zmin = 0.71. We checked that a similar energy growing interference appears in terms
of
√
ŝ as well. The same interference is displayed again with the quadratic cross section in

the right panel of figure 8. The square of the interference term in this illustrative example
in figure 8 appears to have a milder energy growing behavior than the quadratic term itself.
The interference would have been lost if one has not included the full effect of the forward
quarks or not imposed a cut on a proper variable like the one in eq. (4.1). In figure 9, we
show the resurrected interference pattern continues to survive at the hadron level where
the VBFhardness is constructed out of two forward jet candidates and lepton pairs. The
CMS analysis in [16] derives the sensitivity on aTGC using the pT distribution of Z only for
the events inside the Z mass window. In the bottom panel of figure 9, the interference and
quadratic terms of the inclusive cross section are illustrated in pT (``) only for the events
in the Z mass window |m`` −mZ | < 15GeV.

4.2 Validation against the CMS analysis and BDT analysis

We adopt the CMS analysis in [16] for the validation of our framework. Events with two
isolated leptons (electrons or muons) and at least two jets are selected. A lepton is declared
to be isolated if the ratio of the pT -sum of all particles within the isolation cone Riso = 0.4
around the lepton to the pT of the lepton is below 15% and 25% for electrons and muons,
respectively. While two isolated leptons need to satisfy pT > 20GeV and |η(`)| < 2.4, and
have the opposite electric charges, the harder lepton must pass the cut pT > 30GeV as well.
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Figure 9. |σX |/σSM where X = SM×BSM (black) or BSM2 (red) for the EW `` + two jets for the
coupling Ci = λz (other couplings are set to zero). Plots are made with events at the jet level after
imposing the loosened cuts, compared to the CMS analysis [16], pT (j) > 30GeV, pT (`) > 20GeV,
|η(j)| < 4.5 , |η(`)| < 2.5, and mjj > 120GeV.

The particles excluding the isolated leptons are clustered into jets by anti-kt algo-
rithm [43] with the distance parameter of Rjet = 0.4. Jets are required to satisfy pT (j) >
15GeV and |η(j)| ≤ 4.7. Two hardest jets, called the tagging jets, are required to have
pT (j) > 50GeV and pT (j) > 30GeV for the leading and subleading jets, respectively, and
their invariant mass should satisfy mjj > 200GeV. The initial cuts in CMS analysis in [16]
are defined as

pT (`1) > 30 GeV , pT (`2) > 20 GeV , |η(µ)| < 2.4 , |η(e)| < 2.1 ,
pT (j1) > 50 GeV , pT (j2) > 30 GeV , |η(j)| ≤ 4.7 ,

|mZ −m``| < 15 GeV , and mjj > 200 GeV
(4.2)

where the subscripts 1 and 2 mean leading and subleading objects, respectively. The event
yields after imposing the initial cuts are given in table 1 where we included only two largest
backgrounds. The smaller yield of the ee channel is due to the lower selection efficiency of
electrons. We adopted the pT -dependent electron selection efficiency [44] in our analysis,
while setting the selection efficiency for muons to unity. The electron selection efficiency is
roughly 0.7− 0.8 for the pT of interest.
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Initial
Sample ee µµ

tt̄ 5454 (5363±48) 13962 (12938±81)
DY Zjj (pythia8) 146147 (152750±510) 373731 (394640±880)
EW Zjj (pythia8) 2639 (2833±10) 6328 (6665±16)

Table 1. Validation of our simulation at
√
s =13TeV assuming 35.9 fb−1 of the integrated lumi-

nosity. The numbers in parenthesis are CMS values for comparison. The k-factor of 1.7 was applied
for the tt̄ process.

Having our analysis validated with the initial cuts, we move onto the BDT analysis.
The CMS analysis introduces two additional variables. Event balance variable, R(phard

T ),
is defined as

R(phard
T ) = |~pTj1 + ~pTj2 + ~pTZ |

|~pTj1 |+ |~pTj2 |+ |~pTZ |
(4.3)

The z∗ Zeppenfeld variable is defined as

z∗ = y∗

∆yjj
, (4.4)

where y∗ = yZ − 1
2 (yj1 + yj2). Additionally, the quark-gluon discrimination is applied to

two tagging jets. Instead of constructing a likelihood function for the q/g discrimination
and use it in the BDT analysis afterwards as done in the CMS analysis [45], we directly use
the three input variables to the likelihood in our BDT. They are multiplicity, jet shapes,
and the fragmentation function. The jet shape variable is defined as

σ =
√
σ2

1 + σ2
2 with σ1 =

(
λ1/

∑
i

p2
T,i

)1/2

, σ2 =
(
λ2/

∑
i

p2
T,i

)1/2

, (4.5)

where the sum runs over the jet constituents. λ1 and λ2 are the two eigenvalues of the
matrix with the elements, M11 =

∑
i p

2
T,i∆η2

i , M22 =
∑
i p

2
T,i∆φ2

i , and M12 = M21 =
−
∑
i p

2
T,i∆ηi∆φi where ∆ηi and ∆φi are the pseudorapidity and azimuthal distances be-

tween a constituent and the average direction which is defined as the p2
T,i-weighted direction

of jet constituents in η− φ space. The fragmentation function is captured by the variable,

pTD =

√∑
i p

2
T,i∑

i pT,i
, (4.6)

where the sum runs over the jet constituents. For the multiplicity we count all charged and
neutral constituents of a jet whose energy is above 1GeV, and it is denoted as ntracks(j).

Similarly to the CMS analysis in [16], we use the following set of the BDT variables
to train and test our signal and background samples with the initial cuts in eq. (4.2):

mjj , |∆ηjj | , pT (jj) , R(phard
T ) , z∗(Z) ,

ntracks(j1,2) , pTD(j1,2) , σ1(j1,2) ,
(4.7)
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Figure 10. The normalized distribution of VBFhardness for the EFT signal for λz = 0.04, EW
dilepton (denoted by EW Zjj), tt̄+jets, and QCD Drell-Yan backgrounds (denoted by Z+jets)
after imposing pT (j) > 30GeV, pT (`) > 20GeV, |η(j)| < 4.5 , |η(`)| < 2.5, and mjj > 120GeV.
Right panel is logarithmic plot of the left panel in a large VBFhardness range.

where mjj , ηjj , and pT (jj) are the invariant mass, pseudorapidity, and transverse momen-
tum of two leading jets system, respectively. To simplify our analysis and at the same time
to take full advantage of kinematic distribution to efficiently suppress the largest QCD
Drell-Yan background, we first train and test over the EW `` + jets in the SM as a sig-
nal and the remaining samples as the background using the gradient boosting algorithm
(BDTG) provided by the TMVA package [46]. Since the signal and the dominant background
have the largest population in the Z mass window with the small transverse momentum,
the BSM effect is expected to be small. This rejects the QCD Drell-Yan and top pair back-
grounds as much as possible. We impose an appropriate cut on the BDT variable, that
was computed in the previous training, for all the samples of EW `` + jets in the SM and
BSM, and background processes. While it is nontrivial to exactly reproduce the outcome
of the CMS BDT analysis, the outcome of our BDT training, illustrated in figure 20 in
appendix D, shows the clear separation between the signal and background.

We do not add our newly introduced VBFhardness in eq. (4.1) to the BDT variable
set although it has a correlation with mjj , ηjj , and pT (jj). Since we take the EW `` +
jets in the SM as a signal in the training, we expect its effect on the signal/background
discrimination to be mild as is indicated in figure 10. While the VBFhardness variable
helps in resurrecting the interference, its effect should be small as well in the situation
where the sensitivity of aTGCs is mainly driven by the quadratic terms. It will be relevant
in case where the sensitivity is derived by the interference cross section. As is seen in
figure 10, although a proper cut may reduce the signal rate, VBFhardness seems to be a
good discriminator for the EFT signal as it controls the amount of energy going into the
dilepton subsystem. It will be important at the HL-LHC or future collider and we leave
more dedicated analysis for the future study.
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Figure 11. The distributions of pT (``) (left) and m`` (right) at 13TeV, using the integrated
luminosity of 35.9−1, for backgrounds and two selected EFT benchmark signals with the SM con-
tribution subtracted. Events are restricted to those satisfying CMS initial cuts in eq. (4.2).

Using the template analysis of pT (``) in the Z mass window at 13TeV, L = 35.9 fb−1

No BDT cut BDT > 0.6
aTGC 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear)
λz [−0.026, 0.025] [−0.036, 0.036] [−0.20, 0.20] [−0.015, 0.016] [−0.025, 0.026] [−0.099, 0.1]
δg1,z [−0.069, 0.040] [−0.130, 0.068] [−0.096, 0.097] [−0.029, 0.024] [−0.066, 0.043] [−0.051, 0.051]
δκz [−0.18, 0.19] [−0.29, 0.32] [−0.41, 0.41] [−0.089, 0.095] [−0.16, 0.18] [−0.18, 0.18]

Table 2. One-dimensional limits on aTGCs at 68% and 95% CL. Linear denotes the limits obtained
using only the interference cross section between the SM and BSM amplitudes.

Using the template analysis of m`` at 13TeV, L = 35.9 fb−1

No BDT cut BDT > 0.6
aTGC 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear)
λz [−0.031, 0.029] [−0.045, 0.043] [−0.22, 0.22] [−0.025, 0.023] [−0.039, 0.035] [−0.13, 0.13]
δg1,z [−0.074, 0.056] [−0.13, 0.094] [−0.13, 0.13] [−0.033, 0.029] [−0.067, 0.052] [−0.062, 0.063]
δκz [−0.099, 0.099] [−0.14, 0.15] [−0.56, 0.56] [−0.062, 0.062] [−0.097, 0.098] [−0.26, 0.26]

Table 3. Similar caption to table 2.

4.3 Sensitivity to aTGC at the LHC

To evaluate sentivity to aTGC, we construct 1D templates binned either in pT (``) and m``.
Events are distributed over 20 equal-spaced bins of pT (``) between 0 and 1200GeV where
the last bin contains events beyond 1200GeV. ` includes both electrons and muons.5 We
also newly construct templates of m`` with 10 equal-spaced bins between 0 and 2000GeV
where the last bin contains events beyond 2000GeV. The distributions of backgrounds and
two selected EFT benchmark points (with the SM contribution subtracted) are illustrated
in figure 11. We construct a log likelihood in terms of aTGCs, assuming the Poisson

5On the contrary, the CMS analysis in [16] separately distribute events in 15 bins in pT (``) = [0, 900]GeV
and 20 bins in [0, 1200]GeV for electrons and muons, respectively.
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distribution,
− 2∆ logL(λz, δg1,z, δκz) , (4.8)

where ∆ indicates that the minimum is subtracted. We include only the statistical uncer-
tainty since the systematic uncertainty in each bin is not reported in [16] and the overall
size of it in table 1 looks subdominant to the statistical one.

The 68% and 95% CL intervals of an individual aTGC, where two others are set to
zero without the marginalization, are presented in table 2 and 3. For the result with
the BDT cut, we estimated the sensitivity with the incremental BDT cut starting with
a mild value, and did not find visible improvement with a stronger BDT cut than 0.6.
For λz, the 95% CL interval from BDT > 0.6 is worse than the expected value of the
CMS one, or λCMS

z = [−0.014, 0.014 ] [16].6 For the δg1,z coupling, our analysis gives
roughly comparable with the CMS one, δgCMS

1,z = [−0.053, 0.061 ] [16]. The two-dimensional
exclusion regions from the binned analysis of pT (``) in the Z mass window are illustrated
in figure 12 where the remaining coupling is set to zero without the marginalization. The
gray lines in figure 12 illustrate the exclusion region at 95% CL using only linear terms
in aTGCs in our parametrization of the cross section (see eq. (1.3)). It indicates that
the sensitivity of λz is dominantly driven by the quadratic term whereas the effect of the
quadratic term is less pronounced for two other aTGC couplings.

We newly derive the sensitivity using the binned analysis of m``. As discussed in
section 4.1, the invariant mass of the dilepton system has the relation m2

``−m2
jj = (2z−1)ŝ,

wheremjj is the invariant mass of two forward jets, z is the fraction of the total energy of the
partonic system carried by the `` system, and m`` alone does not guarantee the hardness
of the `` subsystem. However, while a nominal cut on the VBFhardness (see eq. (4.1)
for the definition) ensures that at least some amount of the total energy goes into the ``
subsystem and greatly helps recovering the interference, as is clearly seen in figure 8, it may
not improve the situation for the case where the sensitivity is dominantly driven by the
quadratic terms. For this reason, we have not exploited VBFhardness. The 68% and 95%
CL intervals of an individual aTGC are presented in table 3. From the comparison between
tables 2 and 3, we observe that δκz is better constrained by the binned analysis of m``

whereas λz and δg1,z are better constrained by the analysis using the distribution of pT (``).
The two-dimensional exclusion regions from the binned analysis of m`` are illustrated

in figure 13 where similarly the remaining coupling was set to zero without the marginal-
ization. Unlike the case using pT (``) in figure 12, the sensitivity, for instance, of λz is
significantly weakened (see upper right panel of figure 13) when the quadratic term is re-
moved. This is due to the interference suppression as illustrated by the black dashed line in
the right panel of figure 8. The situation is contrasted to those obtained using the binned
analysis with pT (``). As observed in the bottom panel of figure 9, the discrepancy between

6Comparing two distributions of pT (Z) in figure 8 of [16] (separately displayed for electrons and muons)
and figure 11 (summed over both leptons), our signal to background ratio looks rather smaller than the
CMS one in a high pT region where a large statistical power is expected. We suspect that this discrepancy
could be partly due to the different configuration for simulation of the aTGC signal and lepton selection
efficiency and so on. As our estimation is conservative, we leave it as-is.
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Figure 12. Two-dimensional limits on aTGCs at 68% (dashed) and 95% CL (solid) regions obtained
using the binned analysis of pT (``) in the Z mass window, assuming the integrated luminosity of
35.9 fb−1 at

√
s = 13TeV. Compared to the red solid lines, thin gray lines were obtained only with

the interference term which is linear in the aTGC coupling for the BDT > 0.6.

the interference and quadratic terms in the pT (``) distribution is less pronounced, compared
to the current case, and the interference term itself also shows the pT -growing behavior.

Figure 14 illustrates how the sensitivity in the plane (λz, δg1,z) changes as some of the
higher bins are removed in the binned analysis of pT (``) and m``, respectively, for two cases
without (left panels of figure 14) and with the BDT cut (right panels of figure 14). This
practice is meaningful especially for m`` as the EFT cutoff can be directly imposed on the
m`` variable. For the case with the BDT cut, sensitivity to δg1,z mostly comes from the
first small number of bins, corresponding to the well below sub-TeV in both pT (``) and m``

whereas a wider range of the energy contributes to the sensitivity to λz. On the contrary,
for the case without the BDT cut, δg1,z becomes sensitive to the wide range of the energy.

We derive the sensitivity at the LHC and HL-LHC, assuming an integrated luminosity
of 300 fb−1 and 3 ab−1, respectively. We assume that the systematic errors remain to be
negligible, and we include only the statistical uncertainty. Our projection for the LHC and
the HL-LHC is illustrated in table 4. The 95% CL contours in the two-dimensional plane are
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Figure 13. Two-dimensional limits on aTGCs at 68% (dashed) and 95% CL (solid) regions obtained
using the binned analysis of m``, assuming the integrated luminosity of 35.9 fb−1 at

√
s = 13TeV.

Compared to the red solid lines, thin gray lines were obtained only with the interference term which
is linear in the aTGC coupling for the BDT > 0.6. No cuts on VBFhardness was imposed.

shown in figure 15 where upper two plots were obtained by the template analysis of pT (``)
and the bottom ones using m``. The comparison between two analyses for δg1,z and δκz,
namely, one by total cross section up to the quadratic order in aTGC and the other only
with the interference cross section, indicates that the sensitivity is mainly driven by the lin-
ear term for the case of pT (``). While, for the case of m``, the role of the interference hardly
becomes important except for δg1,z where the other two couplings were set to zero, the
VBFhardness may help making the interference more important. Although, as is evident in
figure 10 a cut on VBFhardness may reduce the signal rate, loosening other cuts may com-
pensate it and it can be an important variable at the HL-LHC regarding the interference.

4.4 Sensitivity to EFT operators and comparison with diboson

In this section, we also derive the sensitivity to dimension-6 operators from the EW ``+jets
process. For a clear comparison, we adopt the same basis as in [16], namely HISZ basis [50].
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Figure 14. Breakdown of pT (``) (top) and m`` (bottom) categories in the plane (λz, δg1,z),
assuming the integrated luminosity of 35.9 fb−1 at

√
s = 13TeV. Curves of various styles indicate

the 95% CL contours.

Three operators that contributes to aTGCs are given by
CWWW

Λ2 tr(ŴµνŴνρŴρµ) , CW
Λ2 (DµH)†Ŵµν(DνH) , CB

Λ2 (DµH)†B̂µν(DνH) , (4.9)

where Ŵµν = W a
µν

σa

2 g and B̂µν = Bµν
1
2g
′ were defined in [50]. They contribute to aTGCs

via the relations [51],

λz = λγ = CWWW
3g2m2

W

2Λ2 , δg1,z = (CW + CB) m
2
W

2Λ2 , δκγ = CW
m2
W

2Λ2 ,
(4.10)

from which we derive the sensitivity to the EFT operators. They are summarized in table 5
for the integrated luminosity of 35.9 fb−1. The sensitivity on the tr(W 3

µν) operator has been
measured by the recent CMS Wγ analysis [5], using the differential distributions of the
azimuthal angle and transverse momentum of the photon. The corresponding operator
in [5] in the Warsaw basis [52] was defined as

C3W εijkW
i
µνW

j
νρW

k
ρµ , (4.11)

which connects to CWWW via C3W = g3

4
CWWW

Λ2 ∼ 0.07 × CWWW
Λ2 . We can translate the

observed sensitivity on CWWW /Λ2 = [−2.6, 2.6] (TeV−2) at 95% CL from the CMS ``+

– 23 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
9

13TeV, L = 300 fb−1

Using the template analysis of pT (``) in the Z mass
No BDT cut BDT > 0.6

aTGC 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear)
λz [−0.017, 0.017] [−0.025, 0.024] [−0.070, 0.070] [−0.0076, 0.0081] [−0.012, 0.012] [−0.035, 0.035]
δg1,z [−0.019, 0.016] [−0.042, 0.029] [−0.033, 0.033] [−0.0093, 0.0087] [−0.019, 0.017] [−0.018, 0.018]
δκz [−0.069, 0.072] [−0.13, 0.14] [−0.14, 0.14] [−0.032, 0.033] [−0.062, 0.065] [−0.064, 0.064]

Using the template analysis of m``

λz [−0.017, 0.016] [−0.025, 0.023] [−0.075, 0.075] [−0.013, 0.012] [−0.022, 0.018] [−0.045, 0.046]
δg1,z [−0.025, 0.022] [−0.051, 0.040] [−0.047, 0.047] [−0.011, 0.011] [−0.023, 0.020] [−0.022, 0.022]
δκz [−0.054, 0.054] [−0.080, 0.080] [−0.19, 0.19] [−0.031, 0.030] [−0.049, 0.048] [−0.089, 0.089]

13TeV, L = 3000 fb−1

Using the template analysis of pT (``) in the Z mass
λz [−0.0077, 0.0072] [−0.011, 0.011] [−0.022, 0.022] [−0.0036, 0.0039] [−0.0056, 0.0060] [−0.011, 0.011]
δg1,z [−0.0055, 0.0052] [−0.011, 0.010] [−0.011, 0.011] [−0.0029, 0.0028] [−0.0057, 0.0055] [−0.0057, 0.0057]
δκz [−0.023, 0.023] [−0.044, 0.045] [−0.045, 0.045] [−0.010, 0.010] [−0.020, 0.020] [−0.020, 0.020]

Using the template analysis of m``

λz [−0.0090, 0.0077] [−0.013, 0.012] [−0.024, 0.024] [−0.0060, 0.0053] [−0.0096, 0.0085] [−0.014, 0.014]
δg1,z [−0.0076, 0.0077] [−0.015, 0.014] [−0.015, 0.015] [−0.0035, 0.0034] [−0.0070, 0.0067] [−0.0069, 0.0069]
δκz [−0.025, 0.025] [−0.040, 0.040] [−0.062, 0.062] [−0.013, 0.013] [−0.022, 0.022] [−0.028, 0.028]

Table 4. One-dimensional limits on aTGCs at 68% and 95% CL at 13TeV using the integrated
luminosity of L = 300 fb−1 and L = 3000 fb−1. No cut on VBFhardness was imposed.

jets analysis [16], using the integrated luminosity of 35.9 fb−1, in terms of C3W , importantly
taking into account roughly four times more data of 139 fb−1:7

Ctranslated from EW ``+jets
3W, assuming 139fb−1 ∼ 0.07× [−2.6, 2.6]× 1√

1.97
= [−0.13, 0.13] . (4.12)

That is, the CMS result from EW ``+jets, assuming 139 fb−1 of data, looks roughly two
times worse than the sensitivity from the CMSWγ, namely C3W = [−0.062, 0.052] (TeV−2)
at 95 % CL [5]. Our analysis of the EW ``+jets gives the three times worse result compared
to the CMS ``+ jets analysis, or Ctranslated from our EW ``+jets

3W, 139fb−1 = [−0.303, 0.314] (TeV−2),
which is roughly six times worse than the CMS Wγ result. We think that, given the
discrepancy between the CMS analysis [16] and our re-analysis (see footnote 6 and 9),
whether the EW ``+jets process is practically relevant or not for the tr(W 3

µν) operator,
compared to the diboson process, remains inconclusive. The observed sensitivity from the
ATLAS Zjj analysis [17], using 139 fb−1 of data, which is C3W = [−0.19, 0.41] (TeV−2)
at 95% CL looks slightly weaker than the result from the CMS analysis in [16] except
that the sensitivity has been derived mainly by the interference term unlike the case of
the CMS one (one also notes that the sensitivity derived from the CMS Wγ analysis [5]
is still dominated by the quadratic term). The sensitivity on the same operator from the
WW, WZ processes, using the integrated luminosity of 137 fb−1, in the ATLAS analysis [3]

71/
√

1.97 ∼ 1/
√

2 is multiplied since roughly four times more luminosity is equivalent to increasing the
signal by the factor of 2 which translates to the improvement of C3W by the factor of

√
2, assuming that

the cross section is dominated purely by the quadratic term.
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Figure 15. The two-dimensional contours at 95% CL, obtained using the binned analysis of
pT (``) (upper) and m`` (bottom), assuming the integrated luminosities of 35.9 fb−1 and 300 fb−1

at
√
s = 13TeV. The dashed lines were obtained only with the interference term which is linear in

the aTGC coupling.

reports C3W = [−0.14, 0.15] (TeV−2) at 95% CL which is similar to the CMS EW ``+jets
analysis [16] as is seen in eq. (4.12). The recent CMS WZ analysis [4], using the integrated
luminosity of 137 fb−1, reports the observed limits CWWW /Λ2 = [−1.0, 1.2] (TeV−2) at
95% CL which translates to Ctranslated fromWZ

3W, 137fb−1 ∼ 0.07×[−1.0, 1.2] = [−0.07, 0.084] (TeV−2)
which is consistent with the CMS Wγ analysis [5].

The coupling λz is probed only by the transverse modes in the diboson process and
thus it is subject to the noninterference issue. Whereas the couplings δg1, z and δκz are also
probed by the longitudinal polarization of the gauge bosons (see [7], for instance), and they
are not necessarily subject to the same issue. The CMS WZ analysis [4], using 137 fb−1 of
data, obtained the observed limits, CW /Λ2 = [−2.5, 0.3] (TeV−2) and CB/Λ2 = [−43, 113]
(TeV−2) at 95% CL. The CMS EW ``+jets analysis [16], using 35.9 fb−1 of data, obtained
the observed limit CW /Λ2 = [−8.4, 10.1] (TeV−2) with no limit on CB/Λ2. Our analysis
of EW ``+jets, assuming 139 fb−1 of data, leads to CW /Λ2 = [−10.2, 7.69] (TeV−2) and
CB/Λ2 = [−10.7, 7.72] (TeV−2).

On the other hand, due to the Goldstone boson equivalence theorem at the high en-
ergy, the couplings δg1, z and δκz (or δκγ depending on literature) can also be probed by
the Wh, Zh measurements where the gauge bosons are longitudinal. This was discussed
in [13, 53, 54] in the context of high energy primaries, and was revisited in [55] with an
updated analysis for further improvement. For the comparison with the high energy probe
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13TeV, L = 35.9 fb−1

Using the template analysis of pT (``) in the Z mass
aTGC No BDT cut BDT > 0.6
(TeV−2) 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear)

CWWW /Λ2 [−6.35, 6.18] [−9.0, 8.8] [−49.7, 49.8] [−3.79, 3.95] [−6.08, 6.30] [−24.5, 24.7]
CW /Λ2 [−27.3, 12.5] [−46.1, 21.2] [−31.4, 31.5] [−10.2, 7.68] [−25.8, 13.9] [−16.9, 17.1]
CB/Λ2 [−30.8, 12.4] [−47.1, 21.0] [−31.7, 31.8] [−10.7, 7.71] [−30.1, 13.8] [−17.1, 17.4]

Using the template analysis of m``

CWWW /Λ2 [−7.65, 7.13] [−11.1, 10.5] [−53.4, 53.5] [−6.21, 5.58] [−9.71, 8.68] [−32.2, 32.5]
CW /Λ2 [−40.2, 20.2] [−40.2, 34.7] [−50.4, 50.5] [−14.5, 10.6] [−90.8, 19.2] [−23.5, 23.7]
CB/Λ2 [−32.1, 21.1] [−32.1, 35.5] [−55.1, 55.2] [−17.5, 11.3] [−88.8, 20.1] [−25.7, 25.9]

Table 5. One-dimensional limits on dimension-6 operators at 68% and 95% CL at 13TeV using
the integrated luminosity of L = 35.9 fb−1. CX/Λ2 (X = WWW, W, B) in the TeV−2. No cut on
VBFhardness was imposed.

by the V V and V h measurements, it will make a sense to compare with the projections for
the stage with higher luminosities. Assuming the class of universal theories and neglect-
ing the vertex corrections, the analysis in [55] derives the bounds on aTGCs as δg1,z =
[−2.7 (1.3), 4.3 (1.7)]×10−3 and δκγ = [−13 (7.1), 22 (16.4)]×10−3 at the LHC Run 3 with
300 fb−1 (HL-LHC with 3 ab−1) from one-parameter fit. Combining with the WZ analysis
from [13] tightens the bound on δg1,z which reads δg1,z = [−1.6 (0.71), 2.5 (0.89)] × 10−3

at the Run 3 (HL-LHC) [55]. Our projections using only the pT (``) distributions are
δg1,z = [−21 (6.3), 17 (5.8)]× 10−3 and δκγ = [−216 (68), 206 (67)]× 10−3 at the LHC Run
3 (HL-LHC) from one-parameter fit which look weaker than the V h analysis by the factor
of 4 ∼ 8 (4 ∼ 17) for δg1,z (δκγ) depending on the side of the intervals and luminosities.8

This shows that the V h measurement should be an essential part of the precision program
for aTGCs in the phase of the LHC with the higher luminosities. It will be interesting to
explore if more customized analysis of the EW dilepton process aiming for the LHC with
higher luminosities can improve the sensitivity.

5 Conclusion

We have explored the EW dilepton production with two associated jets for the precision
measurement of aTGC couplings. As was explicitly shown (both analytically and numer-
ically) in this work, the full amplitude, including the forward quarks that radiate off the
vector gauge bosons, exhibits the interference in the inclusive cross section. It reveals an
intriguing feature regarding the interference between the SM and BSM amplitudes (that is

8The sensitivity on the EFT operators in the Warsaw basis that enters the high energy primaries, assum-
ing the class of universal theories and leaving only aTGCs, can be obtained via (using the notation in [55])

c(3)
ϕq = −g

2c2
W

4m2
W

δg1,z , c(1)
ϕq = 1

4 cϕu = −1
2 cϕd = − g2

12m2
W

(
t2W δκγ − s2

W δg1,z
)
. (4.13)

Our projections using only the pT (``) distributions are c(3)
ϕq = [−0.22 (0.075), 0.27 (0.079)] (TeV−2) and

c
(1)
ϕq = [−0.33 (0.11), 0.34 (0.11)] (TeV−2) at the LHC Run 3 (HL-LHC) from one-parameter fit.
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Bounds on aTGCs

Binned Anal. of pT (ℓℓ)
Binned Anal. of m(ℓℓ)

BDT>0.6

No BDT
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BDT>0.6

68%, 95% CL

68%, 95% CL

68%, 95% CL

68%, 95% CL

-x.xx +x.xx 68% CL bound
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Tick size for λz/δg1,z/δκz 0.06/0.013/0.04
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Figure 16. The visual presentation of the sensitivity of aTGCs at 13TeV, assuming three different
luminosities, given in tables 2, 3, and 4.

subject to the helicity selection rule), or the sizable interference in the total cross section can
arise from beyond the relevant regime for the EWA. For the purpose of the interference res-
urrection in our dilepton production in vector boson fusion, we have introduced a new vari-
able, VBFhardness, that can control the amount of energy flowing into the dilepton system.
Using this variable, we have demonstrated that the interference clearly appears when an ap-
propriate cut is applied. As a proof-of-concept example for the interference resurrection in
the inclusive cross section, we have performed the analytic study using the simpler toy pro-
cess, or uγ → dνe+, which was numerically confirmed as well. In the same toy process, we
have newly identified that the sizable interference term in the total cross section arises be-
yond the relevant regime for the EWA which apparently looks negligible in the EWA limit.

We have derived the sensitivity to aTGCs for three scenarios of the LHC and HL-LHC,
assuming the integrated luminosity of 35.9 fb−1, 300 fb−1, and 3000 fb−1. In addition to the
template analysis using the transverse momentum of the dilepton, we also carried out the
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template analysis using the invariant mass of the dilepton in this work. While the bounds on
λz and δg1,z from the dilepton invariant mass are rather weaker than those from the trans-
verse momentum of the dilepton system, the situation is opposite for δκz. The final result
of the one-dimensional bounds at 68% and 95% CL is summarized in figure 16. Our analysis
using the dilepton invariant mass may further be optimized. Vetoing b-jets could help sup-
press top-enriched backgrounds. Exploiting VBFhardness may help in enhancing the role of
the interference with respect to the quadratic terms in aTGCs. Our results were compared
with the existing limits from the CMS and ATLAS diboson processes in terms the EFT
operators. While the sensitivity from the diboson process seems apparently stronger than
the one from EW ``+jets for the measurement of the tr(W 3

µν) operator involving only the
transverse polarizations, some other directions seem to be better constrained in our process.
However, the constraints on those other directions may have a chance to be eventually taken
over by the associated Higgs production and diboson processes of the longitudinal gauge
bosons which probe the same aTGCs in the high energy thanks to the equivalence theorem.
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A Details on simulation

A.1 Signal and background generation

The aTGC interaction in eq. (1.2) is implemented in FeynRules [47] from which we
generate the UFO output for the MadGraph. Electroweak `+`−jj samples were simulated
at leading order (LO) by MadGraph5_aMC@NLO v2.6.7 [41] (QED=4, QCD=0) with the
default factorization and renormalization scales, interfaced with the Pythia8 v8.306 for
the parton shower and hadronization. For the parton distribution function, the NNPDF30
(lo_as0130) [48] is used. The linear (or interference) and quadratic terms in aTGC in our
parametrization of the cross section in eq. (1.3) were separately simulated by using flags
TGC2 = 1 and TGC2 = 2, respectively,9 where TGC denotes the order of aTGC interaction.
The phase space was restricted to those satisfying m`` > 50GeV, pT (j) > 25GeV, and
mjj > 120GeV at the generation level.10

9On the other hand, the CMS analysis [16] generated aTGC signal samples (differently from ours)
effectively over 5×5×5 grid of cWWW /Λ2×cW /Λ2×cB/Λ2 which were equivalent to our aTGCs. We suspect
that this could be partly responsible for the discrepancy between our sensitivity of aTGCs and that in [16].

10To guarantee enough statistics and the smoothness of the differential distribution in the high invariant
mass tail, events were generated separately for multiple intervals of m`` and combined. Similarly for the
EW ``jj samples in the SM.
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d(k3)

γ(p2)

u(p1)

k

ντ(k1)

e+(k2)

ψ

φ

θ

Figure 17. The angular configuration of the illustrative toy process, uγ → dνe+.

All background samples were similarly simulated at leading order (LO) by Mad-
Graph5_aMC@NLO v2.6.7 [41] with the default factorization and renormalization scales,
interfaced with the Pythia8. The NNPDF30 (lo_as0130) was used. The QCD Drell-Yan
process γ∗/Z(`+`−)+jets samples where jets arise from QCD interaction were matched
using kT -jet MLM matching at LO up to three extra jets in 5-flavor. k-factor of 1.23 was
applied [16]. The tt̄ samples were matched using kT -jet MLM matching (QCUT = 45 GeV)
at LO up to two extra jets in 5-flavor and the total cross section was rescaled to match the
NLO value from Powheg [49] by applying the k-factor of 1.7.

B Computation detail of qV → q′ν`

B.1 Choice of four momenta and amplitudes

The polarization vectors of the photon are obtained by rotating εL/R = 1√
2(0, 1, ±i, 0)

(for the massless momenta moving to −z axis) with angle θ about y-axis (similarly angle
φ about z-axis).

εµL/R(p2) = 1√
2

(0, cos θ cosφ∓ i sinφ, cos θ sinφ± i cosφ, − sin θ) . (B.1)

The spinor solutions in our coordinate system are

ūL(k1) = ŝ1/4
(

0, 0, −
√

2z − 1 sin ψ2 , cos ψ2

)
,

vL(k2) = ŝ1/4
(√

2z − 1 cos ψ2 , sin ψ2 , 0, 0
)T

,

uL(p1) = ŝ1/4
(
− sin θ2 , e

iφ cos θ2 , 0, 0
)T

,

ūL(k3) = ŝ1/4
√

2(1− z) (0, 0, −1, 0) ,

(B.2)

where T denotes the transpose. We choose the following four momenta of the particles in
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our 2→ 3 process, uγ → dνe+ and they are illustrated in figure 17.

pµ1 =
√
ŝ

2 (1, sin θ cosφ, sin θ sinφ, cos θ) ,

pµ2 =
√
ŝ

2 (1, − sin θ cosφ, − sin θ sinφ, − cos θ) ,

kµ1 =
√
ŝ

2

(
z + (1− z) cosψ,

√
(2z − 1) sinψ, 0, (1− z) + z cosψ

)
,

kµ2 =
√
ŝ

2

(
z − (1− z) cosψ, −

√
(2z − 1) sinψ, 0, (1− z)− z cosψ

)
,

kµ3 =
√
ŝ (1− z, 0, 0, −(1− z)) ,

kµ =
√
ŝ (z, 0, 0, (1− z)) ,

(B.3)

where the momentum k has the invariant mass of m2
k = (2z − 1)ŝ. Note that the 2 → 3

process can be effectively factorized into 2→ 2 and 1→ 2 via an intermediate momentum
k. The momenta k1 and k2 in eq. (B.3) are obtained by boosting those in the νe rest frame,

kµ1 = mk

2 (1, sinψ, 0, cosψ ) ,

kµ2 = mk

2 (1, − sinψ, 0, − cosψ) ,
(B.4)

along the z-axis with the boosting factor,

kz = γzmkβz → γz = k0

mk
= z√

2z − 1
. (B.5)

When the intermediate W emitted from the quark line is produced nearly on shell, z is
nearly fixed to be

z ∼ 1
2

(
1 + m2

W

ŝ

)
. (B.6)

The helicity amplitudes for four diagrams in figure 4 are given by

iε · Ma = ūL(k3)
(
i
g√
2
γρ
)
uL(p1) −iη

ρν

q2 −m2
W

× ελ(p2) i e
{[
ηµν(q − k)λ − (2 + δκγ)(pµ2ηνλ − pν2ηµλ) + ηνλkµ − ηµλqν

]
+ λz
m2
W

[
(pµ2ηνλ − pν2ηµλ)(k · q) + (qληµν − qµηνλ)(k · p2)

+ (kνηµλ − kληµν)(q · p2)− kνqλpµ2 + kλqµpν2

]}
× −iηµσ

k2 −m2
W + imWΓW

ūL(k1)
(
i
g√
2
γσ
)
vL(k2)

=
(
i
g√
2

)2
(ie) (−i)2

q2 −m2
W

1
k2 −m2

W + imWΓW
ελjνq j

µ
l V

λνµ .

(B.7)
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where q = p2 − k = k3 − p1.

iε · Mb = εµ(p2)ūL(k3)
(
i
g√
2
γρ
)
uL(p1) −iη

ρσ

q2 −m2
W

× ūL(k1)
(
i
g√
2
γσ
)
i( /p2 − /k2)
(p2 − k2)2 (−ieγµ) vL(k2)

=
(
i
g√
2

)2
(−ie) (−i)i

q2 −m2
W

1
(p2 − k2)2 ūL(k1) /jq( /p2 − /k2)/εvL(k2) ,

(B.8)

where q = k3 − p1.

iε ·Mc = εµ(p2)ūL(k3)
(
− i3eγ

µ
)
i( /k3− /p2)
(k3−p2)2

(
i
g√
2
γρ
)
uL(p1)

× −iηρσ

k2−m2
W + imWΓW

ūL(k1)
(
i
g√
2
γσ
)
vL(k2)

=
(
i
g√
2

)2(
− i3e

) (−i)i
k2−m2

W + imWΓW
1

(k3−p2)2 ūL(k3)/ε( /k3− /p2)/jluL(p1) ,

iε ·Md = εµ(p2)ūL(k3)
(
i
g√
2
γρ
)
i( /p1 + /p2)
(p1 +p2)2

(2i
3 eγ

µ
)
uL(p1)

× −iηρσ

k2−m2
W + imWΓW

ūL(k1)
(
i
g√
2
γσ
)
vL(k2)

=
(
i
g√
2

)2(2i
3 e
) (−i)i
k2−m2

W + imWΓW
1

(p1 +p2)2 ūL(k3)/jl( /p1 + /p2)/εuL(p1)

(B.9)

where jµq = ūL(k3)γµuL(p1) and jµl = ūL(k1)γµvL(k2).

B.2 Phase space integration

The partonic cross section of 2 → 3 process in our coordinate system is obtained by the
following phase space integration,

σ̂ = 1
512π4

∫ 1

1/2
dz(1− z)

∫ 1

−1
d cos θ

∫ 1

−1
d cosψ

∫ 2π

0
dφ
∣∣∣M∣∣∣2 , (B.10)

where
∣∣∣M∣∣∣2 is the summed and averaged amplitude-squared over polarizations of the initial

partons and
∣∣∣M∣∣∣ has a negative mass dimension of one.

B.3 Interference between SM and BSM amplitudes for coupling λz
In our 2 → 3 toy process, diagrams a and b in figure 4 are those of interest that probe
the hard subprocess and diagrams c and d belong to the radiation type where W decaying
to e+ν is attached to either incoming or outgoing quark line. Restricting only to the
interference, we split the contribution into two categories.

σ̂hardSM×BSM ≡ σ̂aaSM×BSM + σ̂abSM×BSM , σ̂radSM×BSM ≡ σ̂acSM×BSM + σ̂adSM×BSM , (B.11)

where σ̂ijSM×BSM refers to the partonic cross section from the product of two diagrams i
and j in figure 4. The relative difference between two categories is purely due to the SM as
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Figure 18. The partonic inclusive cross section in an arbitrary rate for the interference between
the SM and BSM, σ̂SM×BSM(uLγL → dνe+), integrated over the entire phase space.
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Figure 19. The partonic inclusive cross section in an arbitrary rate for the interference between
the SM and BSM, σ̂SM×BSM(uLγL → dνe+), integrated over the restricted phase space z = [1−ε, 1]
where ε = 0.1 was chosen.

the λz dependence comes from the common diagram a. The left panel of figure 18 shows
that σ̂hardSM×BSM and σ̂radSM×BSM are comparable. While the magnitude of each σ̂aaSM×BSM and
σ̂abSM×BSM is bigger than both σ̂acSM×BSM and σ̂adSM×BSM, there is a cancellation between two
contributions from the hard subprocess, dictated by the gauge symmetry. It should be an
artifact due to the gauge choice in the photon polarization. One may choose a particular
gauge for the photon polarization to suppress the contribution from the radiation type
diagrams. The observed property is more pronounced when the phase space is restricted
to z = [1 − ε, 1] with ε = 0.1. As is clearly seen in figure 19, an individual contribution
from the hard subprocess becomes much bigger than those involving the radiation type
diagrams, and the cancellation is more dramatic. The gauge dependence may not be a
problem in the 2→ 4 process where all gauge bosons including the photon are attached to
the fermion currents.

Another interesting observation is that the sign of interference is
√
ŝ-dependent. For

instance, in figure 18, the interference stays positive until around
√
ŝ ∼ 4TeV whereas, in

the situation corresponding to figure 19, the interference becomes negative well before TeV.
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C Beyond the effective W approximation in qV → q′ν`

It will be interesting to understand our result in the context of the EWA. In this section, we
carefully compare the derivation of the EWA presented in [40] in the axial gauge with our
amplitudes computed in the unitary gauge. In the unitary gauge, it is difficult to clearly
separate the contributions from sub-amplitudes with definite polarizations. However, de-
spite the different gauge choices, a meaningful comparison with [40] can be done. We start
our discussion by presenting our full amplitude decomposed into Fourier modes in eimφ

(with m as an integer of either sign or zero) only for the left-handed polarization of the
photon as an illustration.11

C.1 Full amplitude of qV → q′ν`

All the amplitudes of qV → q′ν` below, focusing only on the coupling λz, are multiplied
by an overall phase factor e−iφ (without loss of generality) for better comparison with
literature. The amplitude is decomposed into the SM and BSM ones. After substituting
θ → π − θ to parametrize the forward quark region in terms of angle θ (the forward quark
corresponds to θ ∼ 0 after the substitution), our evaluation of the amplitudes for the SM
and BSM for the coupling λz are given by (showing only terms relevant for the forward

11The diagram b in figure 4 takes the form

εL · Mb =
∑

n
cne

inφ

−α+ β cosφ =
∑
m

Cme
imφ , (C.1)

where α, β > 0 and the summation over n in the numerator stops at a finite n. Using the residue theorem
to obtain Cm, the Fourier decomposition is given by

εL · Mb = −
∑
m

∑
n

cn

(
α−

√
α2 − β2

)|n−m|
β|n−m|

√
α2 − β2

 eimφ , (C.2)

where m runs over [−∞, ∞].
√
α2 − β2 in eq. (C.2) in terms of θ after the substitution is given by

√
α2 − β2 = |−1 + z + z cosψ + cos θ(z − cos θ + z cosψ)| , (C.3)

where −1 + z + z cosψ + cos θ(z − cos θ + z cosψ) > 0 in the forward quark limit θ → 0 (the opposite
sign for the backward quark limit). We will refer to the forward quark region by phase space satisfying
−1 + z + z cosψ + cos θ(z − cos θ + z cosψ) > 0 and the backward quark by those with the opposite sign.

– 33 –



J
H
E
P
0
8
(
2
0
2
3
)
0
6
9

quark, see footnote 11)

εL · MBSM = λz
eg2

4m2
W

ŝ5/2√(2z − 1)(1− z) sin θ2 e
−iφ[

(2z − 1)ŝ−m2
W

] [
m2
W + ŝ(1− z)(1− cos θ)

]
×
[
2
√

2z − 1 sinψ cos θ − (1− cosψ) sin θ e−iφ

+ (2z − 1)(1 + cosψ) sin θ eiφ
]
,

εL · MSM = −eg2 1
m2
W + ŝ(1− z)(1− cos θ)

[
ŝ3/2

√
1− z
2z − 1(1 + cosψ) sec θ2

×
4(1− z)(2z − 1)(1− cos θ)− 2(5− 4z)m

2
W

ŝ
6
[
(2z − 1)ŝ−m2

W

]
+ ŝ1/2 (1− z)3/2

2z − 1 sinψ sec3 θ

2 sin θ eiφ

+ ŝ1/2
( 1− z

2z − 1

)3/2 1
2(1− cosψ) sec5 θ

2 sin2 θ e2iφ

+ŝ1/2 (1− z)3/2

(2z − 1)2
1
4(1− cosψ)2 cscψ sec7 θ

2 sin3 θ e3iφ + · · ·
]
,

(C.4)

where coefficients of Fourier modes are exact without any approximation, importantly, it
works for θ ∼ O(1), and ΓW was neglected since here we focus on the off-shell W decaying
to `ν`. The series expansion in e±imφ for a large m without being truncated arises due to
the φ-dependence in the denominator of diagram b in figure 4. In the forward limit of the
quark, namely θ � 1, the amplitudes for the SM and BSM will be approximated in power
series of small θ:

ε · M = θ̃
(
M(0,0)

+ +M(1,0)
+ θ̃ +M(0,1)

+ θ̃∗ + · · ·
)

+ θ̃∗
(
M(0,0)
− +M(1,0)

− θ̃ +M(0,1)
− θ̃∗ + · · ·

)
+ · · · ,

(C.5)

where a subscript ± is to distinguish two groups of terms multiplied by an overall θ̃ and θ̃∗

outside parenthesis. The contributions suppressed by m2
W
E2 (and, in general, those from the

longitudinal polarizations although they do not appear in our computation as the external
fermions are taken to be massless) are denoted by · · · in eq. (C.5). It is important to notice
that the factor e±imφ is always accompanied with θn for m ≤ n in the expansion in terms
of θ � 1 (due to a possible product of θ̃ ≡ θe−iφ and θ̃∗). θ̃ and θ̃∗ can be used as a way to
compare with the derivation in [40] (this property will be clear below) as they are correlated
with the specific polarization of W radiated off the quark current (thus we can extract the
information about the sub-amplitude with a specific polarization). By looking into the
analytic evaluation of the SM and BSM amplitudes in eq. (C.4), we definitely see that

M(0,0)
−,SM 6= 0 M(0,0)

−,BSM = 0 ,

M(0,0)
+,SM = 0 M(0,0)

+,BSM 6= 0 ,
(C.6)

which is the reflection of the helicity selection rule.
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C.2 What gets lost in effective W approximation

The derivation of the EWA in 2→ 3 process in [40] has been carried out in the axial gauge
where all radiation type diagrams were supposed to be sub-dominant. The derivation starts
with the full matrix element expanded in power series of the virtuality of the gauge boson
V ≡ m2−q2 radiated off the forward quark line, while assuming xE ∼ (1−x)E, δm = m/E,
δ⊥ = p⊥/E � 1 (E as the scale of the hard subprocess, m the gauge boson mass, p⊥ the
transverse momentum of the quark). Quoting eq. (37) of [40] in their notation, the full
amplitude takes the form

Atotal = − i

V 2

∑
h=±1

[
Jµ(εhµ)∗

] [
εhνAνhard

]

− i

V 2

[
Jµ(ε0

µ)∗
] [(

1− V 2

m2

)
ε0
νAνhard

] (
1 +O(δ2

⊥ + δ2
m)
)
,

(C.7)

where the splitting amplitudes for the transverse polarizations were given by (similarly for
the longitudinal polarization)

− i

V 2

[
Jµ(ε±µ )∗

]
= 2Cp⊥e

±iφ

V 2 g±(x)
(
1 +O(δ2

⊥ + δ2
m)
)
, (C.8)

where g±(x) is the splitting function for transverse polarizations. In our toy process uγ →
dνe+ only with λz, the full amplitude would include terms in their language

∝
[
Jµ(ε−µ )∗

] [
ε−ν AνSM

]
+
[
Jµ(ε+

µ )∗
] [
ε+
ν AνBSM

]
, (C.9)

where the polarization is that of W radiated off the quark current. Note that the total he-
licity of the sub-amplitude of Wγ → `ν` for the SM and BSM with the insertion of tr(W 3

µν)
are different while the total helicity of the full amplitude can match. Following the notation
of [40] and its procedure, the sub-amplitudes are expanded in p̃⊥

E and p̃∗⊥
E (eq. (55) of [40]),

A± ≡ g±(x)
[
ε±ν Aν

]
= A(0,0)

± +A(1,0)
±

p̃⊥
E

+A(0,1)
±

p̃∗⊥
E

+A(1,1)
±

p̃⊥p̃
∗
⊥

E2 +A(2,0)
±

p̃2
⊥
E2 +A(0,2)

±
p̃∗2⊥
E2 + · · · ,

(C.10)

where p̃⊥ ≡ p1
⊥ − ip2

⊥ ≡ p⊥e
−iφ and p̃∗⊥ = p⊥e

iφ is the complex conjugate. Since
pT (q) = (1 − z)

√
ŝ sin θ and m2

eν = (2z − 1)ŝ in our toy process, taking meν ∼ E for
z ∼ O(1) as an energy of the hard subprocess, we have the relation p⊥ ∼ E θ with θ � 1
from which we can relate p̃⊥ and θ̃. The total amplitude is rewritten as, keeping only
transverse polarizations to simplify the discussion,

Atotal = 2C
V 2 [p̃⊥A+ + p̃∗⊥A−]

= 2C
V 2

[
p̃⊥

(
A(0,0)

+ +A(1,0)
+

p̃⊥
E

+A(0,1)
+

p̃∗⊥
E

+ · · ·
)

+ p̃∗⊥

(
A(0,0)
− +A(1,0)

−
p̃⊥
E

+A(0,1)
−

p̃∗⊥
E

+ · · ·
)]

,

(C.11)
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where we also kept higher-order terms which are important in our situation unlike the case
of the derivation in [40] which keeps only the leading terms A(0,0)

± . Upon squaring the full
amplitude, we would expect interference terms to the total cross section such as

∝ (p̃⊥p̃∗⊥)2

E2

(
A(1,0)∗
−,SMA

(0,1)
+,BSM + h.c.

)
+ · · · (C.12)

whereas the leading SM and quadratic terms of the BSM are given by

∝ (p̃⊥p̃∗⊥)
∣∣∣A(0,0)
−,SM

∣∣∣2 + (p̃⊥p̃∗⊥)
∣∣∣A(0,0)

+,BSM

∣∣∣2 + · · · , (C.13)

where only leading φ-independent terms (that can survive in the inclusive cross section)
were written in eqs. (C.12) and (C.13) for an illustration. Therefore, the leading contribu-
tions to the interference and quadratic terms in the inclusive cross section scale as, showing
only leading φ-independent terms,

|Atotal|2SM×BSM
|Atotal|2SM

∝ λzθ2E
2

Λ2 ,
|Atotal|2BSM2

|Atotal|2SM
∝ λ2

z

E4

Λ4 . (C.14)

The interference appears suppressed by θ2 in case of θ � 1, compared to the typical
energy-growing behavior. Note that there could be also terms suppressed by δ2

m = m2

E2 in the
interference in eq. (C.14). However, importantly, our exact result in eq. (C.4) extend to the
situation with a sizeable θ which can be thought of kind of the resummation. If only leading
terms A(0,0)

± are taken as in [40], the interference between the SM and BSM would have only
cos(2φ) term which vanishes upon the integration over φ. The explicit analytic evaluation
and numerical confirmation of our toy process reveals a sizable phase space beyond the
relevant regime of the EWA that contributes to the interference in the inclusive cross
section. We suspect that our situation belongs to an exceptional case mentioned in [40].

D Detail of BDT analysis

For the purpose of the training and testing, we made separate inclusive EW ``jj and
QCD Drell-Yan samples over the entire m`` range whereas the samples (for the same
processes) for the actual BDT analysis were generated in multiple m`` bins to guarantee the
smoothness with enough statistics up to the high invariant mass tail. The ratio of samples
for the training and testing to those for the actual analysis is 1 to 4. For tt̄+jets samples, we
used 30% for the training and testing and the remaining 70% for the analysis. We trained
and tested over the EW ``jj in the SM as a signal and the remaining as the background
using the gradient boosting algorithm (called BDTG) provided in TMVA package. Our
validation of the BDT analysis is illustrated in figure 20 which shows the clear separation
of the EW `` + jets events from the QCD Drell-Yan and top pair backgrounds.

Training and testing by taking EFT benchmark points as signals and the remaining
as backgrounds may help in boosting the discrimination of the EFT signals from the back-
ground, and VBFhardness may play a role in that situation. We also have not included
any top-related variables, including b-jets, which may be important in the binned analysis
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Figure 20. Our validation of the BDT analysis with the variable set in eq. (4.7), using the gradient
boosting algorithm in TMVA package.

of m`` as top backgrounds remain significant up to a higher energy tail (see right panel
of figure 11). The distributions for part of the BDT variables, given in eq. (4.7), after
imposing pT and η cuts on jets and leptons are illustrated in figure 21 where we also added
one selected EFT benchmark point for λz = 0.04 as an illustration.
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Figure 21. The normalized distribution of BDT variables for the EFT signal for λz = 0.04 and
backgrounds after imposing pT (j1) > 50GeV, pT (j2) > 30GeV, pT (`1) > 30GeV, pT (`2) > 20GeV,
|η(j)| < 4.5 , |η(`)| < 2.5. Recall that EW Zjj and EFT samples were generated with mjj >

120GeV at the generation level.
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